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1. Introduction

This report is concerned with the upward continuation of graviiy anomaly
data given on the surface of the earth. A number of computational procedures
to be presented here are offshoots from the studies of Cruz (1985) dealing with
modeling the external gravity disturbance vector field.

Various modern possibilities exist to model the external gravity field of the
earth for the realistic case of free-air anomalies being given on the surface of
the earth’s visible topography. These possibilities fall under two general types
of modeling approaches: the continuous approach, and the discrete approach.
In the continuous approach the free-air anomalies are assumed to be known al
every point of the earth's surface, and the Molodensky problem is being
solved. In the discrete approach the anomalies are known only al discrete
points of the earth's surface, and the Bjerhammar problem is then being
solved. In this report we have used the discrete approach, specifically least
squares collocation, only in the first stage of data processing, for the purpose
of generating an optimal set of mean surface free-air anomalies from the
originally given irregular and discrete distribution of point anomaly data.
After this, using the optimal set of surface data and concepts from the con-
tinuous approach we generated our quantity of interest which is the upward
continued anomaly.

The simplest conceptualization of a solution to the (continuous)
Molodensky's problem is by means of analytic continuation advocated in Moritz
(1969). The cxternal gravity anomaly field is analytically continued to a level
surface which may be entirely above, partly above and partly below, or
entirely below the earth’s surface. Once the level surface anomalics are
known, then under a spherical approximation the external gravity field can be
generated from these anomalies using classical procrdures for data on a

sphere. A general procedure for analytical continuation is by means of Taylor
series:

Bgpk = Bgg + %ﬁ (Hp- Hg) + %i}g(np— Hs)? + ... (1.1)
where
Agg surface free-air anomaly, defined more precisely in section 3

Agpk anomaly in the same plumb line as ags, but located on the
level surface, to which the surface data are being reduced

Hg elevation of the surface point to which 4gg applies

Hp elevation of the level surface of agp¥

Q%ﬁ vertical gradient of the gravity aromaly field

If the level surface to which the data are reduced is entirely below the earth's
surface the analytical (downward) continuation may also be done by an
inversion, usually by successive approximations, of the c¢lassical Poisson
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integral {see equation (2.1.13))
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in accordance with the procedures of Bjerhammar (1964).

The use of (1.1) presenls practical difficulties because the computation of

the required vertieal gradients of the gravity anomaly field, even just the first
gradient. and the more so the higher order gradients, poses rather severe
requirements on the density and accuracy of gravily data (for a studv of
numerical evaluation of the gradients, see Noe, 1980). Therefore, the tech-
niques that we have used in this report have a common motivation, namely Lo
avoid altogether the use of correction terms in (1.1} and therefore use only the
first term. The different manners in which the correction terms are avoided
give rise to three methods for upward continuation which we numerically tested
and compared using real gravity and elevation data. The first method, and the
crudest, is to simply drop the correction terms and take Agp¥ to be cqual to
Agg; we therefore simply insert igg directly into the classical Poisson upward
continuation integral for data on a sphere. This procedure will obviously be in
crror especially in areas with rough anomaly field and our numerical study will
provide a feeling for the magnitude of this error. The second method is to
drop all correction terms, only after the terrain correction has been applied to
g, The application of the terrain correction is viewed as a first order
attempt to reduce the surface data agg to a level surface; the reduced dala are
then inserted into the Poisson upward continuation integral. The third method
is to drop the correction terms, only after smoothing the anomaly field by tLhe
subtraction of the gravitational effects of certain shallow topographic masses of
assumed density. The total upward continued anomaly field is then the sum of
two ficlds: one gencrated by classical Poisson integration from the residual
anomalies left after the removal of topographic masses, and the other is the
field generated by integration of the gravitational effccts of the removed
Lopographlc masses t,hemselvps This third method is in the spirit of the
o oate o it St ornded T thy VO s oo ind

Forsberg (see Fsrhermng, 1979 Tscherning and F‘orsber 1983; and Forsberg,
1931, p. 11).

Other concerns of this report include the use of sphurical harmonics in
anomaly field modeling, the use of Fourier series for upward continuation, and
the applieatiocn of studied modeling techniques to the balloon-borne gravity
project being coordinated by the Air Force Geophysics Laboratory (Lazarewic:,
ot al.,, 1983).
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2. Upward Continuation Formuias

2.1 Spherical-Earth Poisson Integral

Let us use the spherical coordinates r (geocentric radius), 3 (geocentric
latitude), and X (geocentric longitude). The anomalous potential T(r, 3, A)
being a harmonic function in space has surface spherical harmonics Tp(R, ¥, \)
attenuating with r=(n+t) (Heiskanen and Moritz, 1967, p. 35):

n+1

T’n(ra $1 X) = ( ) Tn(R, 6, X) (2.11)

N

The surface harmonics of the gravity anomaly ag(r, %, A) and anomalous
potential T(r, ¥, A\) are fundamentally related, in a spherical approximation, as
follows (ibid., pp. 88-89):

sgn(r, 3, 0 = 2, 3,00 (2.1.2)

The last equation becomes for r=R:

sgn(R, ¥, A) = ";(—1 Th(R, 3, A) (2.1.3)

Substituting (2.1.1) into (2.1.2):

Agpir, ¥, A) = %— (%)““ Tn(R, &, A) (2.1.4)

Substituting (2.1.3) into (2.1.4):

agalr, 3, 0 = (%2 40 R, 3, M), (2.1.5) I

’ 4

that is, the surface harmonics of 4g attenuate as r—(n+2), The upward 1
continued anomaly Ag(r, ¥, X) is found by summing the terms in (2.1.5). After :
omitting the zero and first degree harmonics as customary: .
. Zm R.n+2 " N ] <

Ag'\rv $v \) b <F) Agn(R, $' :\) (.‘.l.b\ . )

n-2
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The space domain equivalent of (2.1.6) is:

sg(r, &, %) = | [ K(t, ) sgr, 3, ) do (2.1.7)
a
where

R

t = (¥

K(t, ¥) = 2n+1) th+2 Pp(cos ¥) (2.1.8)
n=2

cos ¥ = sin ¥ sin ¥’ + cos ¥ cos ¥ cos (A’ - A) (2.1.9)

A closed form for K(t, ¥) can be obtained using the following relation (ibid., p.

35):
_t2 =
,ELLD_E_.)_ - E (2n+1) th*! Po(cos ¥) (2.1.10)
n=0
where D - (1 + t2 - 2t cos ¥)* (2.1.11)
Multiplying (2.1.10) by t, removing the zero and first degree harmonics, and S
combining with (2.1.8) we get the closed form: ""1
2 32 "..—-4
Kt, v) = E—Q%Tt—l -2 - 3t3 cos ¥ (2.1.12)
Equation (2.1.7) with (2.1.12) is the same as equation (2.160) in ibid., p. 90, 1

and is in fact the well-known Poisson integral formula for the space domain -
upward continuation of gravity anomalies given on the surface of a geocentric -

sphere. Note that the second and third terms of the integral kernel K(t, ¥) are ) ]
related to the removal of the zero and first degree harmonics from the gravity L
anomaly field. For our (low altitude) applications, however, these terms have T
negligible effects and so it is sufficient to retain only the first term of the .
integral kernel, giving: e
L) ([ R LAY o .
Aglir, 3, >, - A D2 do (2.1.13) -

g
4
-l
4 -
s
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3.2 Rationale Behind an_Indirect Method of Upward Continuation of Surface

Ancmalies

We are given free-air anomalies Agg on the earth’s surface,and we want to
upward continue them. The difficulty with the use of Poisson integral to solve
this problem is that the Poisson geometry requires that the data to be upward
continued refer to points on the surface of a sphere. Conceptually, what could
be done would be to first analytically continue the surface anomalies agg to
level surface anomalies Ag;*). A simple conceptualization of this continuation is
by Taylor series, wherein certain corrections that depend on the vertical

gradients of the field are added to Agg to arrive at Ag§ (see equation (1.1) of
the Introduction):

2
a8y Lateg oy

ayf A ¢ o p - Hs) + 5 o (3.2.1)

[t is to be expected that the rougher the anomaly field (from which agg and
. 5 e osamples)  the larger will be the difference betweern 3agg and 545’
because high degree frequencies are affected much by downward/upward
continuation (see, for example, Rummel, 1975, pp. 42-43) while low frequencies
are not as critically affected.

There is a theoretical problem in the case of downward continuation of agg
(Agr’; liecs below agg), namely, that very high irregularities in the field caused
by very high irregularities in the topography may cause the solution Agg; to
diverge, or, at least, be very unstable in the sense that small errors in agg
will amplify tremendously to errors in Agr*). Another, now practical, problem is
that the computation of the vertical gradients of the field, even just the first
gradient and the more so the higher the gradients, places rather severe
requirements on the density and accuracy of the given agg.

The above problems reduce for the case of a smooth anomaly field. The
corrections (-’sz)-“ﬂs) will be small, the downward continuation stable, and
simpler computational procedures for the corrections may be devised. It is
then the central strategy of what we would call the indirect method of upward
continuation to explain away most of the high frequencies present in 4gy as
being the effect agb (see sootion 2.5) of certain shallow topographic masses, in
order to be left only with a relatively low frequency residual field (Ae;s—.\gt')
which can then be upward continued less problematically by the Poisson
integral, The missing upward continuation of Agt to space points is then
carried oul essentinlly by an equivalent source technique, which says that the
ficld for which aul are boundary values has the topographic masses  as
"sources” and, therefore, the said field can be generated by direct integration
of gravitational influences of the masses (see section 2.5). In the next section
we will detail the equations that can be used to implement an indirect method
of upward continuation of surface anomalies agg.

[t is to be neted that the Poisson integration, with its associated problem
of requirias data to be located on a level surface, can be altogether avoided

18
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have found that under the approximation (3.1.4) the ag as operationally
computed from (3.1.1) is a free-air anomaly on the earth's surface. Using a

subscript s to denote a surface free-air anomaly we finally bhave the
interpretation:

ag 2 3gg(h, ¢, \) (3.1.6)

The error of the interpretation (3.1.6) is given by the last term of (3.1.2)

arising from the difference between tl.> normal height H¥ of P and the ortho
metric height H of P:

iz] (0¥ - ) (3.10.7)

¢ Ags h, e, N - g s —[ (
ah
p

An estimate of this error can be obtained using the standard normal gradient

7Y - 0.3086 mgal/m (318
dh
ind an approximate formula for (H¥ - I) found in Heiskanen and Moritz (1967,

section 3-13):

u* ' meters) A8BA(gals) ~ H{km)> (8.1.97
where 3gpa i1s the Bouguer anomaly given by
AppA ¢ An o 2nkell (3.1.10)

A standard value for 27kp, where k=Newtonian gravitational constant and
p=density of topographic masses, is

2l - 0.1119 mgal,/m, (3.1.11)

corresponding to k=66.7 x 1077 cm?®/g/sec? and p=2.67 g/cm’. Using equations
(3.1.8) te, (3.1.11) into (3.1.7) and using gravity anomaly and elevation data in
our test area in New Mexico we found that the error £ has a maximal value of
0.2 meal, oceurringg over mountainous terrain of the aren,
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[:g vertical gradient of the normal gravity at P
P

Yp’(O, ¢, A) normal gravity on the ellipsoid, at the point P’ that has
the same (¢, A) as P.

Al this point, assume that we do not know the vertical location of the point at
which the ag found by (3.1.1) applies, and let us find this location. Let H¥ be
the normal height of P as defined in equation (3.1); we can then perform the
following manipulations on (3.1.1):

1]

ag = gp(h, o, N) ~ [7p7(0, &, %) + [gﬁ]pn]

gpth, ¢, A) - [rpr(0, &, A) + [gﬁ]pu . %ﬁ]pﬂ* - [gﬁ]pu*]

Cgpth, 0, M) = [rp2(0, 0, A) [%ﬁ]pn*] + [%ﬁ]p (H*-H) (3.1.2)

The quantily in brackets is the normal gravity, upward continued from the
ellipsoidal point P’ to the normal point @ of P defined in equation (3.1):

d o
rQ{l*, &, A = yp0(0, 8, N) + [;ﬁ]pn* (3.1.3)

To a good approximation we may assume

H = H¥ (3.1.1
-]
(see equation {3.1.7) below for an estimate of the actual difference, H-H¥). R
Substituting (3.1.3) into (3.1.2) and neglecting the small third term becausc of ]
(3.1.4) we get: K
4
dg = gp(h, ¢, \) - TQ(H*’ $, A) (3.1.5) “ ,"
The right side of (3.1.5) is, according to (3.1), the gravity anowmaly al the point N
I, which in the present case is a station on the earth’s surface. Therefore we .
1
16 ]
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3. Upward Continuation of Surface Free-Air Anomalies

In this section we will describe a procedure that can be used for the
upward continuation of free-air anomalies given on the surface of Lhe earth.
These surface free-air anomalies are boundary values of free-air anomalies in
space. Recall from Heiskanen and Moritz (1967, pp. 91, 292) that the gravity

anomaly on or above the surface of the earth is defined as follows: . ".:.'.:
]
AR
agp(h, ¢, A\) = gp(h, ¢, X) — yq(H*, ¢, ) (3.1 '
where (see diagram on p. 13) <
"
Agp gravity anomaly at P )
h height of P above the reference ellipsoid
%, X geodetic latitude and longitude of P and Q :
Q normal point of P; point Q is established such that the actual ‘f;gl
gravity potential Wp at P is equal to the normal gravity o
potential Ug at Q, and P and Q lie on the same plumb line of :
the normal gravity field. -
H* height of the normal point Q above the refcrence ellipsoud; 3
H¥ is called the normal height of P. R
gp gravity at P f:}q
7Q normal gravity at Q. - j

Below we first show that operationally available anomalies can be closely
interpreted as surface free-air anomalies, and then we describe a strategy for

upward continuation of these anomalies combining Poisson integration, spherical f"j—lj:
harmonics, and topographic mass effects. i |

3.1 Available Anomalics as Surface Values

AT RR

In practice, available gravity anomalies had been computed from:

. _ _61] VS . )
Ag - gp(h, 0’ X) [dh pH 7p (0’ O. X) (J.l.l) ‘
where

h, ¢, A ellipsoidal height, geodetic latitude, and geodetic . 1
longitude of a gravity station P -
gp(h, &, \; measured gravity at P _-j:::
- - 9
H orthometric height of P —
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Input: (¢, A, H‘) plus parameters of the normal ellipsoid.

Compute:
X = (N + BH¥) cos ¢ cos A (2.6.2)
Y = (N + H¥) cos ¢ sin A (2.6.3)
Z = (N(1-e?) + H¥) sin ¢ (2.6.4)
with N = a/(l-e? sin? ¢)* (2.6.5)
p? = X2 + Y2 (2.6.6)
r? = p? + 22 (2.6.7)
c = ae (2.6.8)
K2 = r? + c2 (2.6.9)
h? = K* - 4p2c?)% (2.6.10)
. - K3-h?
sin?a ~ 2p? (2.6.11)
tan § = —Z— (2.6.12)
p cos « e
q =% [a-3cot « (l1-a« cot a)] (2.6.13)
s - 3(1 — « cot a) _
qQ’ = sin? o 1 (2.6.14)
w = (1 - sin?a cos?g)* (2.6.15)
. KM sin?a = w?a?q’ sip?a« ., 1
Taq = P + Zeqow (sin?p 3) (2.6.16)
252 3 3
rg = w4a‘q sin « sin B cos B (2.6.17)
CqQoW
_ _ w3c cos?g
Ta = Ta w tan o (2.6.18)
2 N . __'-»_.
vg = -rg + WG Sl F con § (2.6.19) S
]
T = (ra t TR)H (2.6.20) '
where y7 1s the normal gravity in the vertical direction. iwf
14 s
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™ spherop U = W, = const.

I

/————__\

ellipsoid U = W,

Diagram for Section 2.6

The relation between the geometric height h, normal height H¥ and the height
anomaly ¢, for a given computation point P in space.

A

For the computation of normal gravity yT we require the normal height H¥. .
Based on (Heiskanen and Moritz, 1967, eq. (8-5)) H* can be derived from h and

height anomaly ¢ according to the formula: -

L)

HY = h - ¢ (2.6.1) -

For our balloon project we converted the known geometric heights into the '_‘ :
normal heights wusing the height anomalies estimated from the spherical
harmonic expansion of gravity field up to degree 180 (Rapp, 1981).

Here we will give a summary of the procedure as presented in (Rapp, i:f-f‘_
January 1966, pp. 14-16):
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anomalies at the point Q. This means that we are viewing agq! and sgqBA as
components of excesses or deficiencies of the actual gravity at the point Q
over the normal gravity at the "corresponding” normal point Q' (the
correspondence between Q and Q' is that the actual potential at Q is equal to
the normal potential at Q’, and Q and Q' lie on the same plumb line of the
normal field - see Heiskanen and Moritz, 1967, p. 83). In this sense we may
also call agQ! and agQPA as gravity anomalies generated by the topographic
masses and Bouguer plate, respectively.

2.6 Normal Gravity in Space

The spatial relationship between the actual gravity field and the normal
gravity field generated by a given ellipsoid of reference is given on the
diagram on the next page. The geop passing through point P has the same
constant potential as the spherop passing through the point Q, where the geop
and spherop are the equipotential surfaces of the actual and ellipsoidal gravity
field respectively.

Normal gravity corresponding to a given value of gravity anomaly at a
fixed location P in space is defined to be the vertical component of attraction
generated by the equipotential ellipsoid of revolution (rotating with the same
angular velocity » as the real earth) at the respective point Q located on the
equipotential surface of the ellipsoidal field corresponding to point P. The
spatial correspondence between P and Q is uniquely determined by the
requirement that the earth’s gravity potential at P is equal to the normal
gravity potential of ellipsoid at the corresponding point Q. The normal gravity
in space is fully determined by the geometric (size and shape) and the
physical (surface potential and the rotation) properties of the level ellipsoid.
Combined with the gravity anomaly the normal gravity can be used to compute
the vertical attraction due to the actual Earth at any location. For the
purpose of this report we use the equations by (Hirvonen, 1960), as
implemented by (Rapp, Feb. 1966) in his FORTRAN subprogram 'SGAMMT’.

Although the method of Hirvonen was fully described by (Rapp, Jan. 1966)
and then fully documented for the computer implementation in (Rapp, Feb. 1966)
we decided to state here the equations used by the subprogram 'SGAMMT'. For
details the reader is referred to (Hirvonen, 1960) and (Rapp, Jan. 1966).

Suppose we need the vertical component of normal gravity 7y cor-
responding to the computation point P having the coordinates ¢, A, h, where h
is the geometric height of P ubove the reference ellipsoid. Then, following
(Heiskanen and Moritz, 1967, eq. (8-5)) the normal gravity rr should be
referred to some point Q which is the 'normal’ counterpoint of P. Point Q can
be found by projecting point P from the geop having potential Wy on to the
corresponding spherop having normal potential U=W, (see diagram below). The
distance between P and Q or the geop-spherop separation is called the height
anomaly ¢. The geometric height of 'mormal’ point @ above reference ellipsoid
is defined to be the normal height H*¥ of the corresponding point P.

12
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sgh = kp J[[ (Fp=rocos ¥pao ‘Qf ) dvg (2.5.3)
v 4 P

The last equation gives the ("topographic") gravity anomaly in space generated
by topographic masses of assumed density.

For the generation of topographic gravity anomalies right on the surface of
the earth, a special treatment is sometimes convenient. Assuming that the

masses referred to are those lying between the actual topography and the
geoid we can perform the following split (see ibid., pp. 130-132):

Agot = AgQBA - tcq (2.5.4)
where
qut vertical attraction at the surface point Q generated by topo-
graphic masses lying between the actual topography and the
geoid.
AgQBA vertical attraction at Q generated by a Bouguer plate through Q.

tcq the well-known gravimetric terrain correction at Q, to account
for the difference between the attraction AgQBA caused by the
Bouguer plate and the attraction Ath caused by the actual
topographic masses.

In terms of formulas:
agBA = 2mkpHq (2.5.5)

— 2
teg = % ken2 [ [ {HH)S 4o (2.5.8)
g

in which (Moritz, 1966, p. 88):

R mean earth radius

H elevation of integration point

Hq elevation of computation point

o unit sphere

do element of solid angle

to 2R sin y/2

v angular distance between Q and do.

The use of the symbol "A" in (2.5.4) is intended to suggest that in this report
we are using the attractions Ath' and AgQBA as components of gravity

11




2.5 Direct Topographic _Mass Effect

Vv Topographic heights are a much more readily available and cheap type of
ﬂ information than gravity anomalies themselves, and can be effectively utilized
- in gravily anomaly interpolation and upward continuation problems. The idea
- is to subtract, from the originally given gravity anomaly boundary values on
o the earth's surface, the gravity anomaly effects caused by topographic musses
T of assumed density. The residual anomalies are then smoother and can be
much more easily interpolated and upward continued than the original
anomalies. The removed effects of the topographic masses are then added back
at the interpolation points or at the upward continuation points by direct
integration of the gravitational influence of the masses at those points.

Topographic masses of assumed constant density o (e.g., £=2.67 g/cm?® is a
standard density for land areas) directly generate gravitational attractions at
points on or above the earth’s surface. Considering the topographic masses as
anomalous, we have the following "topographic"” anomalous potential generated .
at the point P in space (Heiskanen and Moritz, 1967, p. 3): T

1 o
t - A
Tt = ke [f] (o) “a (2.5.1) -4
v N
where
k Newtonian gravitational constant

P constant density of the topographic masses

dvq element of volume
i v volume occupied by the masses

tq (rP”rQ2 - 2rprq cos ¢pq)’9, i.e., the spatial distance between
h P and Q
: ¥pQ angular distance between P and Q L
'_- rp, rQ geocentric radius of P, Q. :‘ -
b We have the following fundamental relation between gravity anomaly Ag and
- anomalous potential T in a spherical approximation (ibid., p. 88):

-aT
o Tor

=~ It
~3
—~
%]
o
to

. Substituting (2.5.1) into (2.5.2), exchanging the order of integration and
: differentiation, and performing the differentiations, yield:

LA
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where a(x, y) = Ir (x2 + v2 + z2)3/2 (2.4.3)

a{x, y) can be viewed as the impulse response function of the upward
continuation operation (2.4.2).

. Now, the 2-dimensional Fourier transform of (2.4.3) is defined as

(Robinson E.A., M.T. Silvia, 1981, p. 224):

A(kx, ky) = '[ ‘[ a(x, y) ezni(kxx+kyy) dxdy = e 272 k% + k§ (2.4.4)

for z > 0, 1 =V -1

(see equation 7, p. 11 and equation 44, p. 56, Erdelyi et al., 1954).

This is the frequency response or transfer function associated with
upward continuation operator. The function A(ky, ky) is a spatial frequency
function of two continuous variables ky, ky representing the frequencies (in
cycles per unit length) along x and y directions.

The boundary values f(x, f) can be transformed to the frequency domain
by means of the Fourier integral:

F(ky, ky) = l I f(x, y) e THlaxtkyy) 44y (2.4.5)

TV TV

Using this transform the equivalence of the Dirichlet integral (2.4.1) in the
frequency domain turns out to be the multiplication of the transfer function

(2.4.4) and the Fourier transform of the data measured at the boundary
surface:

- 2 2
Fzlky, ky) = ACky, ky) = Fky, ky) = e 22™ Kxthy o poe k) (2.4.6)

L e o

Finally, the desired upward-continued function is obtained by the inverse
Fourier transform of the frequency furnction F; (Bhattacharyya, 1967):

fh(x, y) = ig

o Fz(kx, ky) e—zni(kxx + kyY) dkxd.ky (2-4.7)

g8
8% 8
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2.4 Fourier Transform

In this section we briefly introduce the 3-dimensional Dirichlet problem for
the half-space and state its solution. This forms the theoretical basis on which
the Fourier transformation technique can be implemented in upward continu-
ation problemsa. Fourier technique offers high speeds in computation, requiring
no more assumptions than the planar Poisson’s integral method does. Now we

will state the problem theoretically (refer to later sections for examples of -
practical implementation).

The Dirichlet problem in three-dimensions consists of the Laplace equation

- a3f aif aif

. —— —_ 1 — = 2 =
k ax? * ay? ' az2 vif =0 -
- within some region V with boundary surface S, together with data prescribed
on S.

We will use the usual planar approximation to the earth’s surface, where R
the boundary surface S is the plane z=0 and the volume of interest V is the "
half-space 2z>0. The solution to this problem is known in the literature
(Robinson E.A., M.T. Silvia, 1981, p. 223) as the Dirichlet integral. '--T::

sy 2 20
[(x-a)2 + (y-B)2 + 22]3/2 g

(2.4.1)

i f(a, #) dads s
fz(x, y) = f(x, y, 2z) = f f

where f(«, ) = f(a, #, 0) are boundary values of f for z=0.

In this report the function f to be upward continued is gravity anomaly
function. The gravity anomaly is a harmonic function in case of the planar
Dirichlet problem as stated above. We use the fact that in our planar case
vertical gravity satisfies the Laplace equation if the potential does. The proof
can be found in (Robinson E.A., M.T. Silvia, 1981, p. 213).

The solution (2.4.1) is identical with the Poisson’s integral for gravity '
anomalies introduced in Section 2.3. Poisson’s integral can be viewed as a
limiting case for the sphere of radius R when R3®, On the other hand the
Dirichlet solution (2.4.1) is derived for the planar case of half-space z>0 using
the Green’s second identity (Robinson E.A., M.T. Silvia, 1981, ch. 4). Notice
that (2.4.1) represents the 2-dimensional convolution integral.

Equation (2.4.1) can be written in the form:

fa(x, v' =

9 8
89
«

f(a, 8) a(x-a, y-f) da df (2.4.2)

. o0
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Equation (2.2.3) was motivated by the fact that for a point on the ellipsoid
(i.e., r = rg, Ho = 0) (2.2.3) becomes:

® n
sg(rg, ¢, A)= ?‘f Z (n'l)Z
n=2 m=0

(E:mcos mA + §nmsin m\) ?nm(sin ®). (2.2.4)

The last equation is essentially the equation inverted in Rapp, 1981, eq. (2)
(except that Rapp used the geoccntric latltude % instead of the geodetic
latitude ¢) to compute his coefficients Cnm, s¥, from terrestrial data
ag(rg, ¢, A); realizing this we merely constructed (2.2.3) as an upward
continued version of (2.2.4) under a spherical approximation. The rationale
behind (2.2.3) does not hold at lower degrees (say, n < 36) of the Rapp 1981
field, these degrees being dominated by satellite derived coefficients Tkmy» SEm-
Nevertheless, we decided to use (2.2.3) entirely, for n=2 to 180°; in any case,
(2.2.3) serves our above stated purpose of generating a self-consistenl, spatial
reference anomaly field from a set of spherical harmonic coefficients.

2.3 Flat-Earth Poisson Integral

For our applications of the Poisson integral (2.1.13a) it is sufficient to use
a planar approximation, namely (Rapp, 1966; Hirvonen and Moritz, 1963):

sg(r, o, A) = Ho [ [ 2&(rE. 0% XD 4 gy (2.3.1)
A Do
where
A fixed integration area
Do (x2 + y? + H3)*
X R cos & (X - \)
y R(e’ - o)

Equation (2.3.1) represents a flat-earth, space domain upward continuation
formula for gravity anomalies. This equation is indicated to be valid for a
distance up to 20° from the computation point and up to an upward continu-
ation distance of 250 km (Hirvonen and Moritz, 1963, p. 71),

@

.

e L,




n

- kM oX S o« 5 ) o
Tn(a, ¥, A) = a E (Cnmcos mA + Snmsxn mA ) an(sxn 3 (2.2.1)
m=0
where
a v nally an equatorial radius
kM geocentric gravitational constant
E:m , §nm fully normalized potential coefficients with even-degree
zonal reference values subtracted
! kM c* s kM 3 spectrum of T(r, %, A) on the sphere of radius a

nm fully normalized Legendre functions

The upward continued gravity anomalies from spherical harmonics arec obtained

by substituting (2.2.1) into (2.1.4) with R=ca, then summing the surface
harmonics:

T T
.-"-".'._ L

® n
+ - - . - .
Ap‘r, &, A) = %T g (n~-1)(?)n z E (C:mcos mx + Snmsm m\ ) an(sm ¥
n=2

m=0 (2.2.2)

For the purposes of this report we would like to use spherical harmonics
to generate a rigorously self-consistent field of gravity anomalies on the
carth’s surface and in space. This field is to be used as reference, to be
subtracted from the observed field as part of upward continuation procedures.
For this purpose (2.2.2) can be used, but during our applications and becausc
we used the Rapp (1981) field we decided to use the following equation

instead:
@ n
kM a n+2
Al - Pt - S
g, e ) = 5 Y (b (" Y
n-2 m=0
(C¥ cos mA + S sin mA) P (sin ¢), (2.2.3)
nm nm nm

where, as in (2.1.13b), Ho is the height of the computation point (r, ¢, \) above
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Note that (2.1.13) needs gravity anomalies to be given on the surface of a
(geocentric) sphere. In practice, we have gravity anomalies given on the
surface of a (geocentric) reference ellipsoid (the problem of the tepography is
taken care of separately). To still use (2.1.13) in practice, we follow the
spherical approximation used in Heiskanen and Moritz (1967, p. 241):

Spherical Approximation

2 2 ’

ag(r, o, A) = & (1 t7) IJ' 2g(rE, ’ 127D 4o (2.1.13a)

__R o
t - R7H, (2.1.13b)
cos ¥ = sin ¢ sin ¢’ + cos ¢ cos ¢’ cos(A’'-A) (2.1.13¢)

\
where
(r, ¢, 7\) geocentric radius, and geodetic latitude and longitude of

the computation point in space.

(rg, ¢, A") geocentric radius, and geodetic latitude and longitude of
data point on the reference ellipsoid.

R a mean earth radius, taken as R=6371 km.

Ho height of the computation point (r, ¢, A) above the refer-
ence ellipsoid; we will also call H, the upward continua-
tion distance, i.e. the distance through which the data are
upward continued to arrive at the value of anomaly in
space.

D still evaluated by (2.1.11), but now using t from (2.1.13b)
and cos ¥y from (2.1.13c).

2.2 Spherical Harmonics

The surface spherical harmonics of the anomalous potential T(r, 3%, X) on a

"_ "

sphere of radius "a" can be written as (Rapp, 1982):
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with the use of either least squares collocation or Bjerhammar-type equivalent
source technique. In these methods it would still be advisable to reduce the
original anomalies Agg to the smoothed anomalies (Ags-ag‘-) in order to maximize
convergence and economy of solution. The residual anomalies (Ags—Agt) are
essentially inverted into a new set of parameters {(the solution veclor
(C+D)~(agg~-agt) in collocation; the fictitious quantities sg*¥ on the Bjerhammar
sphere, in the Bjerhammar method) and then the new parameters rigorously
generate the external gravity field. The rigor of the collocation or Bjerhammar
'- . approach lies in that they can handle the fact that the data (AgB—Agt') are
b

Ty T T YW Y Y T

located on a non-level surface. The main disadvantage of these methods is that
they require expensive matrix inversion.

3.3 Direct and Indirect Upward Continuation

A. Direct Method

In what we will call the direct method, either the surface free-air anomalies
Agg or the terrain-corrected free-air anomalies (Faye anomalies) Aggttc are
input directly in the Poisson upward continuation integral to model the external
[ gravity anomaly field. Using the planar approximation (2.3.1) we have the
. following directly upward continued fields:

H A
(Ags)g = Up{egs) = 5p f f s g dy (3.3.1)
o A Do
and
A +
(ags + to)] = Upl(ags + te)) = 52 [ [ {08852 te) gy (3.3.2)
A o

where the superscript D denotes the direct method; the subscript H, denotes
the upward continuation distance H,; U, denotes the Poisson upward con-
tinuation operation; Agg i8 given by (3.1.15); and tc is formally given by (2.5.6).
Equation (3.3.1) is the usual simple-minded application of the classical upward
continuation solution. Equation (3.3.2) is the well-known Pellinen type of
approach (see details in the next paragraphs) in which a first order reduction
of surface data Agg to a level surface is8 implemented using the terrain

correction and an assumption of strong correlation between Agg and elevations
{Moritz, 1968, pp. 1-2).

Note that in both equations (3.3.1) and (3.3.2), the vertical position of the
level surface to which the input anomalies are assumed to refer has no
clear-cut theoretical definition. It is only implicitly required that this level
surface be close to the earth’s surface, in order to minimize the differences
between the surface anomalies Agg and the level surface anomalies ag¥. A
natural choice for the position of the reference level would be that of some
mean elevation in the area covered by the surface anomalies. In the section an
numerical investigations (section 9) we present a study of the sensitivity of
the upward continuation results to the choice of the position of reference level.
Given the reference level, the upward continuation distance H, to be used in
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‘:_: (3.3.1) and (3.3.2) follows as being equal to the elevation of the computation
- point above the reference level surface.

The anomalies Agg are anomalies on the surface of the earth, and therefore
the level surface to which 8gg refers is strictly changing from point to point,
These data with changing level are therefore not directly usgable under the
problem formulation of the original Poisson integral, namely, that the data must
be on the surface of a single level sphere. However, compared with 8gg, the
quantities (8gg + tc) are closer to being level surface anomalies. This use of
the terrain correction to approximate a reduction of surface data to a level

surface is discussed in Moritz, 1966, pp. 104-107. There it is shown that for
1 long wavelengths (n, small) we have:
S
: oy - [9AE
b (te)n = | o AH]n (3.3.3)
[ where AI{:I{S—Hp is the vertical distance between the surface anomaly 4gg and
X the level surface anomaly Ag* and the subscript n denotes the nth surface
- harmonic of the quantity in parentheses. We therefore have this relation
t" between the harmonics for relatively small n (see (3.2.1)):
i aa .
- agX = (Agg - -;ﬁ aH)p = (agg + to)p (3.3.4)
-

where Ag'r*, is the nth harmonic of the level surface anomalies ag¥*. Equation
(3.3.4) with the provision that n is small, means that in the space domain the
use of a (agg + tcS), where now we let tc® denote a long wavelength form of
the actual tc, serves to implement a first order long wavelength reduction of
the surface data agg to level surface data ag¥, Again, as stated in the
previous paragraph, the level of Ag* is not clearly defined under this
"tc-technique"” of data reduction, and the sensitivity of upward continuation

results to a particular choice of reference level for ag¥ will be studied in
section 9.

The use of tc instead of a tcS in (3.3.2) forms a theoretical objection to
this equation, because according to the last paragraph the interpretation of the
terrain correction as a data reduction to a level surface is theoretically
guaranteed to be valid (via (3.3.4)) only at long wavelengths. As onc of the
desirable features of the indirect method to be discussed next this objection is
minimizcd because a t¢S, i.e., a long wavelength form of tc, is used instead of
the tc itself.

B. _Indirect Method
In order to explain the indirect method let us first define some quantities.

The surface free-air anomaly is given in (3.3.1) as:
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a
bgs =€ - T H -y (3.3.5)

A reference free-air anomaly can be generated from potential coefficicnts
to degree Npax using (2.2.3) with Hy=0 (see also (2.2.4)):

KM Nnax n _ _ _
ags = 22 E (n-1) E (Cﬁm cos mA + Spp sin mA) Ppn(sin ¢) (3.3.6)
n=2 n=0

the superscript s denoting spherical harmonics.

The gravity anomaly on the eartih’s surface, caused by masses of density p
lying between the actual topography and the geoid is given from (2.5.4) as:

agtt = 2xkpH - te (3.3.7)

The gravity anomaly on the surface of a reference topography, caused by
masses of density p lying between the reference topography and the geoid is
given analogously to (3.3.7) as:

agt2 = 2nkpHS - tcS (3.3.8)

where HS is the orthometric height and tcS the terrain correction of the
reference topography. For our purposes HS will come from a spherical
harmonic expansion of topography to degree and order Npax, corresponding to
the maximum degree and order of the reference anomalies agS of (3.3.6):

Nmax n —
Hs = E E '\nm COS mN - Bnm sin mk) an (Sin 0) (3-3.9)
n=0 m=0

The gravity anomaly caused by positive and negative masses of density p
lying between the actual topography H and the reference topography H® can be
written as:

agl = agtt - agte (3.3.10)

Note that agl! refers to a point on the earth’s topography, whereas agl? refers
to a point on the reference topography. Since Agt‘2 is a smooth field it is
reasonable to assume that the analytical continuation of aglt? to the position of
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sl is approximately equal to agl? jtself. In this case (3.3.10) therefore gives
a agl that refers to the earth’s surface.

Substituting (3.3.7) and (3.3.8) into (3.3.10):
agt = 2nkp(H - HS) - (tc - tcS) (3.3.11)

Now a residual anomaly agl' can be obtained by removing from the surface
anomaly agg of (3.3.5) the spherical harmonic anomaly agS of (3.3.6) and the
topographic anomaly agl of (3.3.11):

agl = agg - 4gS - agt, or (3.3.12)

Agl = agg ~ 4gS - 2nkp(H - HS) + (tc - tcS) (3.3.13)

If the reference quantities (those with superscript s) did not appear in (3.3.13)
then this equation would give the expression for a refined Bouguer anomaly
(Heiskanen and Moritz, 19€7, p. 132); but because of the presence of the
reference quantities we will call agl the residual refined Bouguer anomaly.
Equation (3.3.13) states that the original anomalies agg are de-trended (l.) in
the long wavelength, by subtracting free-air anomalies 4gS generated from
spherical harmonics and (2.) in the short wavelength, by doing a "Bouguer
reduction” not with respect to the geoid but with respect to the higher order
but still smooth surface HS from spherical harmonics. Since agl of (3.3.12) is a
smooth quantity (as will be shown numerically later) the point on the earth’s
topography at which Agl applies can be moved vertically to the point on the
reference topography HS, so that for subsequent processing agFr is assumed to
lie on the reference topography.

Considering the above definitions, what we will call the indirect upward

(1) The residual refined Bouguer anomalies agl of (3.3.13) are terrain
corrected by tc¢S, then upward continued using the DPoisson integral given
by (2.3.1):

r S
A gk dy IKRREE

4 A
(agh + tcs)go - Upfagh + tes) - f?h’lf v[ -[ H D
A 0

where the superscript D derotes the fact that (agl + teS) is input directly
into Poisson integral; H, is the upward continuation distance and Uy,
denotes the Poisson integral operator. The use of (3gl + t¢%) instead of
simply 3¢gU is in accordance with earlier discussion on the use of long
wavelength terrain correction {terrain correction indeed has some long
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wavelength power-see p. 74 for a feeling for magnitudes) to approximate
the reduction of surface data to a level surface (agf is data lying on the
reference topography HS). Note from equation (3.3.13) that the usc of
(3gT + tcS) amounts to the transposition of tcS to the left side of the
equation; this significantly reduces the computational effort needed for the

avaluation of the right hand side and is therefore a definite practical
advantage.

{2) The spherical harmonic anomalies 8gS8 of (3.3.8) are implicitly upward
continued using (2.2.3):

Nmax n
kM : a |nt?
S = S = =2 -
dgy = Us{3eS} = o7 ) (n-1) [a+Ho] §
n=2 m=0
(E[*]m cos mA + gnm sin m)\) an(sin 0) (3.3.15) . 3

where Ug denotes the upward continuation of the spherical harmonic series.

(3) The topographic anomalies agt of (3.3.11) are implicitly upward continued

by integration of the gravitational attractions caused by the masses > .|

generating Agl, namely, the masses lying between the actual topography ;

p and the refererce topography (see equation (2.5.3)). In practice the
integration can be implemented using prisms as integration elements. This :1

! prism integration is implemented in an operational program by Forsberg _
(see section 7). In symbolic form, e

| 2
agt = Uplagt) (3.3.16" RS

Hu L _::

' where UR denotes the upward continuation by prism integration of masses.

(1) Adding tcS on both sides of (3.3.12), applying the Poisson integral operator
Up. and transposing terms, we arrive at:

Uplags + tcS) = Uptagh + tcS) + Up(agsS) + Up{Agt} (3.3.17) ] 4
-

The indirect upward continuation method consists of replacing the last two :;1
terms in (3.3.17) as follows: ]
. ' 1

tagg + tcs)lli Urfags + tegl = Upfagh + teS} v UgiagSt + Uplaptl (3.3.18: e
o -".. -

L
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that is, the operator Up operating on anomaly data agS and Ag! have been
replaced by operators Ug operating on spherical harmonic coefficients and
UR operating on topographic masses. The superscript 1 in (3.3.18) denotes
the indirect upward continuation method, and the U symbolizes the
(implicit) indirect upward continuation operator. The last two terms of
(3.3.18) are given in (3.3.15) and (3.3.186).

Starting from Section 7 and onwards we give the relevant numerical
studies on the direct and indirect upward continuation methods, as well as
studies on the Fourier transform method of upward continuation. Meanwhile, in
the next three section (4, 5, 6) we present a general global study of truncation
theory for the anomaly field, spectral characteristics of the anomaly signal, and
error analysis for the (Poisson) upward continuation operation.
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4. Anomaly Field Truncation Theory at Altitude

We can collect equations from section (2.1) as follows:

sge(r, %, 0) = o [ [ K(t, ¥ g(R, ', 1) do (4.1)
o

20142
K(t, f)‘w—l-t’-lﬂ:’ cos ¥

- D3 (4.2)
[}
K(t, ¥) = E (2n+1) tn*2 P (cos ¥) 14.3)
n=2
Agr(r, ¥, ) = ) M7 agm(R, ¥, 05 t= (D) (4.4)
n=2
A "truncated" gravity anomaly field can be generated as follows:
igr = ;gl, I I K(t, ¥) g do (4.5)
[+ 4
0 ; 0 sy <y,
K(t, ¥) = (4.8)

K(t, v) , Yo ¥y < m
Yo ... truncation cap radius.

This truncated field is generated by data function values Ag outside a cap of
radius ¥, centered at the computation point. In this sense, this field is really
a "remote zone" field being generated by remote zone data. The truncation
kernel can be expanded into a series of Legendre polynomials as follows:

K(t, ¥)

Z ‘2!‘];1) qn Pp(cos ¥) (4.7)

n=0
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and the frequency domain generation of the truncated field is then given by
(see analogous manipulations in Jekeli, 1980, for example):

TEr(r, % N) =% Z an 4¢n(R, ¥, 1) (4.8)
n=2

The truncation coefficients qn can be obtained as:

w

dn = I K(t, ¥) Pn(cos ¥) sin ¥ dy (4.9)
o
b

= I K(t, ¥) Pplcos ¥) sin y dy (4.10)
Yo

Putting y = cos ¥, yo = COS ¥o, we have:

Yo :
an(t, vo) = [ K(t, y) Pn(y) dy (4.11) 2
- 4
Substituting (4.2) into (4.11) and using recursive integral evaluations found in : ,
Shepperd (1979, p. E-1) we arrive at the following recursive computations for )
the truncation coefficients: i
qn(t, yo) = t2(1-t?) Lu(t, yo) - t? In(ye) - 3t Hp(yo) (4.12) Z::.j‘
Ln(t, Yo) =_[ —nﬁﬂn, dy (4.13) S
_1 4
Yo
In(t, vo) = [ Pn(y) dy (4.14)
-1
.
Yo '
Hn(t, ¥o) = [ vy Pn(y) dy (4.15)
-1
- .4
)
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Is(yo) Yo + 1

Liye) = 3 (v3 - 1)

—- ~. hnd - T« - s N
Talye) = (Frtl¥e ln=a(yel o (n°2) In-alya) 5 g (4.16)
D G
Ho(yo) = 5 (y3 - 1)

C(ntl) T W) + n Tpey{ve)

Hp (o) Lt 0l (4.17)
botts Yo = TN

Li(t, yo) - BHIXa =D gy

Ln(t, Vo) = Lli&i%—én:* . . Lgil ,n22 (1.18)

The above recursive computations were checked for correcctness and
stability against other published results (with excellent agreement) as part of
the studies of Cruz (1985) on truncation coefficients for various gravimetric
quantities in space. The recursive formulas (4.18) for Lp(t, yo) which is
probably the main source of instability of the recursions can be derived either
analogously to the way Shepperd (1979, pp. B-1 to B-3) derived his Kp(t, yo)

functions, or as a special case of a general formula given by Jekeli (1982,
equations (18) to (22)).

The truncation method expressed by equations (4.5) and (4.6), wherc the
original kernel K(t, ¥) is set to zero for 0 ¢ ¥ < ¥, is in accordance with what
is referred to as an unmodified Molodensky truncation method. Other methods
of truncation can be defined by specifying the truncation kernel as in (4.6},
and deriving, using (4.9), the truncation coefficients that will enter (4.8).
Well-known alternative methods for generating a truncated field include the

Meissl truncation method and an improved Molodensky truncation method, all
these being discussed in Jekeli (1982).
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The interest in truncated fields usually lies in trying to generate the s
various truncated fieldas (unmodified, Meissl, or improved Molodensky truncated ;
field) from a finite set of available spherical harmonic coefficients of the )
earth's gravitational potential. This is in contrast to generating the field from 3
a set of Ag values on a geocentric sphere. The spherical harmonic generation ‘-_-‘
of the truncated field can be accomplished by using in (4.8) the surface har-
monics Agp generated from potential coefficients to degree Npax (see Rapp, ~’_:l1
1982, p. 4). Specifically, we can collect the necessary equations for the o
spherical harmonic generatlion of a truncated anomaly field at altitude, as 1
follows: :
E
- 1 Nmax ’
Ag["(ra ¥, A = E E qn(t‘ YO) * Agn(Rs 3, )‘) (4'198)
4
B 1
Nmax
sgr(r, ¥, )\) =53 g an(t, yo) - (n-1) - [ﬁ] .
n=2 '
"
n__ - _ -
2 (Cn¥ cos mA + Spp sin mA) Ppp(sin ¥) (4.19b) -
m=0 ‘ B
-
__R _R R
t = R+Hg - (4.19¢) l'i
e
o
Yo = COS V¥, (4.19d) 1
where
r, ¥, A geocentric radius, geocentric latitude and
"geocentric" longitude of the computation point;
an(t, yo) truncation coefficients; _*f
Agn(R, ¥, A) surface harmonics of the spatial anomaly field, on a ; f
sphere of radius R; e
R a mean earth radius, taken as R=6371 km; o
1
Eg =7 an average value of gravity; 1
Eﬁm, Snm fully normalized potential coefficients with even "
degree zonal reference values subtracted; -
a radius of the sphere to which Cﬁm and Sppy refer, ]

usually an equatorial radius;
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Ho height of computation peint above the sphere of radius
R:
¥o angular radius of the truncation cap

The truncated spherical harmonic field Tg,’ given in (1.19b) cantains two
types of errors: the commission error, which is the error due to errors in the
potential coefficients being used, and the gmission error, which is the error
due to the use of only a finite set of potential coefficients and the conscquent
omission of the higher frequencies which may exist in the actual truncated
field Ig, being represented. The combined global mean square value of

commission and omission errors can be expressed as (Jekeli, 1980, p. 16; sec
also (4.19a):
_ ) Nmax 1 @
mg - 3 \ Qp? 5Cph + 7 E a4 Cp 4.20)
. 4
n=2 n=Npax+1
where
qn truncation coefficients as found from equations (4.12)-(1.18);
6Cp ancmaly error degree variances referred to a sphere of radius
R (R=6371 km, the mean earth radius). ¢Cp_is caused
by potential couefficient errors :CXy and ¢Spp.  Considering
(4.19b) we have:
\ a Int4 L =k = 2 Y«
8Cn = r*in 1)? [ﬂ] E [(eChm)? * (eSpm)? s . 21a)
m=-0
Ch modeled anomaly degree variances referred to a sphere of radius
R. According to the Tscherning/Happ (1974) model (with
R=6371 km):
) _
Cp = 32028 (n-l) 4 g99617)n+2 (42105

(n-2) (n+24)

Optimization of truncation method usually means modifying the deflinition (4.6)
for the kernel K(t, ¥) (and therefore modifying the truncation coefficients qp)
such that the mean square error m3 in (4.20) is reduced compared with the
unmodified case, for a given number and accuracy (Npax and ¢Cp) of potential
coefficients and ¢iven model (Cp) for anomaly degree variances. Jekeli (1982)
has shewn that for the upward continued gravity anomaly field, optlimization of
truncation method by using the Meissl or improved Molodensky technigue does
not offer a significunt improvement over the unmodifiecd Molodensky method

defined by (4.5) and (4.6). In this report we limit ourselves to the use of the
unmodified truncation method.
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As an application of the important equations (4.19) and (4.20) of this :‘_ 3
section, we considered the main interest in this report, namely, the upward T
continuation of anomalies in the New Mexico area to an approximate altitude of i
28.5 km. We first applied (4.19) by modifying program F388 at OSU (see o
Section 7) to introduce the truncation coefficients qp(t, vo). We used: ]

+ the Rapp-180 ficld (Rapp, 1981)

* Ho = 28.5 km (upward continuation distance)

* y = 979770 mgals (mean value of gravity)

* ¥, = 3° (truncation cap radius)

+a = 6378137 m (equatorial radius)

. ) P
. . - .
L R

G Analeobainninadeched

R = 6371000 m (assumed ground level radius)

p -y

The coefficients qp were computed by a subroutine modified from a subroutine
published by Shepperd (1979). The resulting truncated anomaly field for the
area of interest in our balloon-borne gravity experiment (Section 8) is given as
Figure 1.

If we were using the Rapp-180 field to account for the remote zone outside
a 3°-cap centered at the computation point, the values on the map would be
added to the result of integration of data inside the 3°-cap. Note thal in this
case the data cap of integration moves from computation point to computation
point. For our final operational procedures, however, we simply used a fixed
data cap to compute our anomalies in space and neglected remote zone effects:
this neglection is justified by selecting a sufficiently large size for the fixed
integration cap. In the case just considered an integration cap of radius 3° is
appropriate since the remote zone effects are small as shown in Figure 1.

Let us now turn to an application of equation (4.20). Application of (4.20)
yvields a global analysis of the effect of remote zone anomalies on the upward
continued anomaly and gives an indication of the ability of spherical harmonic
model to account for this effect. As a first application we used only the
second term of (4.20) and started the summation frecm n=2. This is equivalent
to not using any spherical harmonic model to account for the remote zone
effects, the total error being one of pure omission. Using the Tscherning/Rapp
(1974) Cp~-model (4.21b) the results of summing the second term of (4.20) for
altitude 30 km and various truncation angles are shown in Figure 2 as the top o 4
curve. This curve shows that a cap of radius 3° is needed to reduce remote .
zone effects to submilligal level; the 3° cap radius (about 300 km at ground o]
level) is about ten times the upward continuation distance of 30 km and is -
therefore in accordance with the rule that data out to a distance ten times the .
upward continuation distance should be used ({(Hirvonen and Moritz, 1963, p. .
68). 9
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Figure 1. Rapp-180 Truncated G avity Anomaly Field at 28.5 km Altitude, New » P
Mexico Balloon Gravity Test Site. C.I. = 0.01 mgal; Truncation Cap Radius = 3-°. 1
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Omission Error When No Spherical
Harmonic Model is Used to Represent
the Remote Zone Field

. Commission Plus Omission Error

D When the Rapp-180 Spherical Har-
o monic Model is Used to Represent
o
=

{

the Remote Zone Field

Figure 2. krror Incurred When Not Using and When Using a Spherical
Harmonic Model to Represent, at Altitude 30 km, the Remote Zone Field
Generated by Data Outside a Cap of Given Radius. Cp-model from
Tscherning/Rapp (1974); 6Cp from Rapp-180 field with maz = 10 mgals (Rapp,
1981, eq. 30).
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With the numerical values of C, = 683 (mgal?), d = 40 km and A implied by 5'x5’
blocks we compute

my = 11.6/H? mgal (H in km).

So for flight elevation H = 30 km

m30km = 0.013 mgal

which is a much smaller contribution than any of the effects given in Table 1
or 2. A spherical-eartn analysis of the representation error for gravity
anomaly upward continuation may also be done based on Sunkel (1981, p. 17);
however, the effect of representation error is so small (using 5'x5’

mean
values) that we do not repeat this type of analysis here.
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Cis) = M(agag') is the covariance function of actual gravity anomalies,
that is a statistical characterization of aAg field itself (and not
the errors in Ag)

‘ter (Moritz, 1962) assume the following model covariance function for gravity
iomalies:

C(S) - ._Qn__

(6.3.5)
1($)? )

iere C, is the assumed gravity anomaly variance.

> we define a constant a such that a? = g—? then in first approximation
3.3.5) reduces to:

C(s) = Cy - a?s? (6.3.6)

ssume 1lso all blocks are squares having the area Aj; = a? = a? = A.

2
1

hen {(Moritz, 1962) gives the following closed expression for the mean square
presentation error (6.4.3)

3
pi = el a_[).{.n (6.3.7)
4nJ 2 o
here
r: zxg - yi, DZ - H? o+ r

guation (6.3.7) gives the effect due to a single compartment. Next, neglecting
gain correlations between compartments we can find variance of the total
ffect just by summing variances of each contributors:

: atl A} . ST
my = L ow? ST o 6.3.8)
L R E T (

'
rmy J.0288 o a7b?/H? where a and b form the sides of the block. _f ‘_‘.i‘_:
his s the square root of error variance of upward continued represcntation ;
rrot.

"
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ts defined

Loa )
1

where Dj by the relation:

da

D3 with D? =

and Aj is the arca of the rectangular block which is represented by the mean

value g7,

Define the error of representation e
rectangular block i the following relation holds:

é" =

ag|. - sgg
1 1

which is the difference between Ag and the constant TE] over the rectangular
the propagated error of

block 1. Then,
single block 1 is:

from (6.1.2)

where the tatal representation errvor

Stmilarly to (6.1.1) the mean square

ap x byl s
a3 b' a; b
\1)‘—# ‘Yv)y—-}; X1)'”# ynL_—:L)
N2 2 2 2 2
w0 [ | (
i g il aj © bj a; " by
Xo “_:1; yo_é-L XO‘—‘-—% Yo _"-.];
Fix, y* Fix’, y') C(s) dxdy dx’dy’ (6.3.4) 1
where <4 wox' Y - v y' 4 us the Cartesian distance on plane 1
4
.4
. | ! {1 , \
Fosy oy ‘ i so consequent vy F'yy, vy odsdy = 00
8] N REER
A,
i1 R
o
1
e e L el

T e v w

H? o+ (x-x")2 + (yy’)?

to be the function such that over each

(6.3.2)

representation due

to

is the sum of »ny’s.

representation error due to single block




terrestrial data should be avoided as much as possible, because these cause
errors to show up significantly in the upward contirued anomaly ficld. Note
from Table 2 that the larger the error correlation length the slower the rate at

which the error loses its total energy (variance) with altitude, an expected
result. '

Table 2

Upward Continued Error Variance and Correlation Length, '
for Attenuated White Noise Error Model.
vr = 100 mgal?

H=30 km H=10 km H=5 km
£R fr vovp fr v vr fr v ovp
(km) (Im) (mgal) (km) (mgal) (km) (mgal) ’
2 47 0.42 17 1.18 10 2.10 _
5 50 1.00 20 2.50 12 4.00 ]
10 55 1.82 25 4.00 18 5.71 N ‘
30 75 4.00 45 6.67 38 8.00 - .ij
Wl ol
4
6.3 Flat-Earth Representation Error Propagation .
[
The effect of representation error can also be evaluated. This error is f-:’-‘.‘_<
committed when the continuous function aAg is replaced by the step function '
composed of the mean values representing it over rectangular blocks used in
computation. See (Sunkel, 1981). Following (Moritz, 1962) where the same 4
error was considered (but under the name of integration error) we pose the
problem in the following way: )
Instend of the exact Poigson’s integral (6.1.1) in the actual computation wo use
the summation:
1
AnH ,,}“ v Ay _A~ (6.3, 1) :
Pidbet Ul'l ~:
R
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from (6.2.4). In Figure 5 we show the covariance function (6.2.4) for r=R (i.e.,
on the surface of the carth) and varying depths (R-Rp) to the white noise
process. Figure 5 shows clearly the relation (6.2.5); the graphs were scaled to
vield the variance v=100 mgal?.

The functions (6.2.4) such as shown in Figure 5 can be used as error
models, on the earth sphere, and it is of interest to see how these functions
propagate through the upward continuation operator for gravity anomalies. We
have the following procedure for applications:

1. we have, given, the error variance vR and error correlation length ¢Rp of
the error process that we want to model on the earth sphere R.

2. the depth D (not to be confused with the same symbol in (6.2.2)) of the
white noise process generating ¢ is then found from (6.2.5):

(R (6.2.7)

3. the constant of proportionality in (6.2.6) is found from
const. = vR(R-Rp)2? = vp D? (6.2.8)

4. the upward continued error variance at altitude H above the earth sphere
R is found by appiying (6.2.6) with r=R+H and Rp=R-D:

_ const. _ [L]’ ‘6 9

vp = (___r—Rb)’ = VR {g+D (6.2.9)
5. the upward continued correlation length ¢, is found from (6.2.5): '::
. 3 . :
b oc S (r-Rp) = 5 (H+D) (6.2.10) =

We applied (6.2.7) - (6.2.10), starting with vRp=100 mgal? and various

correlation lengths ¢R. The upward continued values v, and ¢, for various
upward continuation distances are shown in Table 2. The values (vr)" in the ) 1

table are directly comparable with the values my in Table 1, and we see a
reasonable agreement; note that (V,.)‘~z has no specific problems associated with
large correlation lengths ¢g whereas my has problems with this as mentioned in
Section 6.1, The conclusion from Table 2 is that error correlations in the

42

LA_’J"J..IJ

N y fe e e e - R I U C
& et CHPC . SR U N S G S PP TS Sl Sl 1 S WY WA TN WORE ST NI WA V0w WPy J SIS S U Sy [y




D(P, Q) = 042 E (2n + 1) Pp(cos ¥) (6.2.2)
n=2
where we start the summation from n=2 in anticipation of inputting D(P, Q) to

an upward continuation operation that starts with n=2. D(P, Q) represents a
dirac delta function (Rummel, 1982, p. 30):

o« for P =2Q
D(P, Q) = P, Qs o (6.2.3)
0 for P #Q

that is, the total variance is infinite and the correlation length is undefined.
To obtain a finite variance and correlation length we upward continue the noise
process, resulting in the attenuated covariance function (note that we are
using the gravity anomaly upward continuation operation):

Dr(s, ¥) = 042 Z si+2 (2n+1) Pp(cos ¥) (6.2.4)
n=2

2
where s = {B?] , and

we visualize that the white noise process is located on a sphere of radius Ry
internal to the earth sphere of radius R, and the attenuated white noise
process described by (6.2.4) is located on a sphere of radius r with r>Rp.

Two important quantities to characterize the covariance function D, are its
variance vy and correlation length §ér. A numerical study of (6.2.4) reveals the
following good approximations:

(r-Rp) = % ér (6.2.5)
_ _const. (6.2.6)
T 7 (r-Rp)? o

that is, the correlation length ¢, is 1.5 times the upward continuation distance
(r-Rp), and the variance of the attenuated white noise process attenuales with
the square of the upward continuation distance. The same relations were
found by Sunkel (1981, p. 12, 14) for a slightly different covariance function
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Now we can evaluate (6.1.6) using different trial correlation lengths ¢ at
different elevations H. The results are shown in Table 1 using the parameter
a,=(10 mgal)?. The closed formula (6.1.6) was derived under the assumption
that the ratio ¢/H remains small (see Moritz, 1962, p. 7). For that reason the C
numbers in the lower right-hand portion of Table 1 have been crossed-out as B

they are considered not to have any physical meaning.

To overcome this assumption see below for a spherical earth analysis.

Table 1

Square root of upward continued error variance at different elevations

my in [mgall; o, = 100 mgal 2
{crossed-out values have no physical meaning)

Assumed correlation

distance in error

function at zero

level (¢ in (km}) H = 30 km H =10 km H=25 km
2 0.28 0.85 1.70
5 0.71 2.12 4.25
10 1.42 4.25 819
30 4.25 1278 2548

6.2 Spherical-Earth Data Error Propagation

Let us now study the propagation of data error through the upward
continuation operation, using as error model an attenuated white noise process
(see Heller and Jordan, 1979, for interesting geodetic applications of such
process). The degree variances of white noise can be written as:

dp = 90?7 (2n+l1) (6.2.1)
e
where the unit variance o,? is a constant and is equal to the variance of a .f;
single harmonic of degree n and order m of the white noise process. White
noise is useful for approximating an uncorrelated noise process. ;
'
The covariance function corresponding to (6.2.1) is: B q
-
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1981). Equation (6.1.3) shows that the weakly correlated (white) noise in the
data will attenuate very rapidly with the elevation H, whereas the long
wavelength widely correlated components of the noise will propagate almost
unattenuated into upward continued gravity field.

This discussion shows that the correlation length of the errors present in

the gravity material will play the major role in the upward continuation error-’

analysis.

As a statistically appropriate measure of the upward continued error

function (6.1.2) we choose (after Moritz, H., 1962) the mean square error
defined as:

ey o M2 .y dxdy dx’dy’
Xy Xy
where o(x, y, x’, ¥’) = M(s, £') is the error covariance function, which is a

statistical description of the errors £(x, y) in Ag. M is the suitable averaging
operator.

In (Moritz, 1962) it is shown that introducing some specific model of the
error covariance function we can produce explicit expressions for the upward
continued mean square error (6.1.4).

Suppose we model the error covariance function present in Ag to be
(Moritz, 1962, p. 3):

o(x, y, x', y’') = 0, €7C282 = g(5g) (6.1.5)

which is a function of distance only (stationarity and isotropy). In eq.
(6.1.5):

s =V (x-x’)2 + (y-y’)? 1is the Cartesian distance between two locations
on the plane.

gy is the error variance (square of the standard
error present in the datum surface anomalies ag)

The constant ¢ = Vtn2/¢ is inversely proportional to the correlation

length ¢ of the error function present in Ag (¢ has to be in the same units as
s and H).

Using this model (Moritz, 1962) shows that the mean square error (6.1.4)
present in the upward continued field takes the simple form:

2y = o {6.1.6
méy 8HZ 6.1.6)
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6. Error Propagation for Upward Continuation Operator

6.1 Flat-Earth Data Frror Propagation

Based on (Moritz, H., 1962) we can formulate the problem in the following -
way.

The upward continuation integral (in planar form) for gravity anomalies is:

sgC v) = 5 | [ am0e, vy BCH- (6.1.1)

where x’y’ are variables of integration,
D? = H? + (xx")? + (y-y’)?
H is the upward continued distance.

Then formally any error £(x, y) in terrestrial Ag will propagate as:

H ) ’ ’ dx,d ! .
o v = oam [ fee, vy B (6.1.2) i
Equation (6.1.2) has the exact form of the original Poisson’s integral with o

gravity anomalies ag replaced by the error function z. As the computational
point (x, y) sweeps the particular level plane at the elevation H above the
reference datum plane, the function zy(x, y) describes the variation of the

directly propagated (upward continued) error. :::'"_:;
Formula (6.1.2) describes the sensitivity of the upward continuation )
operation to the uncertainties in the data. It assures that the errors attenuate N

according to exactly the same law (upward continuation law) as the original
data. The frequency domain equivalent of formula (6.1.2) is: (see eq. 2.4.4) e

- 2 P <
By, ky) = e T2 K+ k9 pe, ky) (6.1.3) -

where ¢, E and :y, Eg are Fourier transform pairs and kg, ky are spatial
frequencies along x and y directions (Robinson E.A., M.T. Silvia, Chap. 2.4,

38 i




P S P P Ty

75 100 o5 150 175 200
HARMONIC DEGREE

Figure 4. Anomaly Degree Variances at Altitudes 30, 60, 100, and 150 km.

Tscherning/Rapp (1974) Anomaly Degree Variance Model Used. .
g o
= -

)

('—\-.I . .:.:
L0 L
x o
- et
a
2 w e
= L

o4
w .
()
=
a
o
je gV
>N
[w]
(&)

=

120, 150. 200. 240. 250, 320. o
BISTANCE (KM) )

=
£
o
@
o

Figure 5. Attenuated White Noise Covariance Functions (scaled), for White Noisc
Depth D=(2/3)(10, 20, 30, 40, 50, 100 km). Note that the Resulting Correlation
Length ¢ = 3/2 D.

37




— W W —— i A S i A St i Rt

~ . - - e

LAl = 30 km

I
(

o e
|

RMS Qll‘gOMRL r

% 25 50 75 100 125 150 175 ong
LOWER LIMIT (N}

Figure 3a. Gravity Anomaly Information Beyond Degree N, for Altitudes 30, 60,

100, and 150 km. Tscherning/Rapp (1974) Anomaly Degree Variance Model
Used.

W 1, 2. 3. u,
CAP RADIUS

5.
(DEGREES)

e

)

'.l .

Figure 13b. Gravity Anomaly Information Generated by (Remote Zone) Data
Outside a Cap of Given Radius, for altitudes 30, 60, 100, and 150 km.
Tscherning/Rapp (1974) Anomaly Degree Variance Model Used.

e
el e

36

. R A
a4 PPN’ VAP S IO TV YOS ¥




The sum (5.4) is important for studying the remote zone effects on upward
continued anomalies.

Formulas (5.1), (5.3), and (5.4) were used at altitudes 30, 60, 100 and 150
km, the results being given as Figures 3a, 3b, and 4. The Tscherning/Rapp
(1974) Cpr-model was used (see (4.21b)). Figure 3a gives the gravity anomaly
information beyond degree N: for example, using a 180-field to represent the
external anomaly field leaves 5 mgals to be resolved at 30 km, 1.7 mgals at 60
km, 0.4 mgal at 100 km, and 0.1 mgal at 150 km. Figure 3b gives the gravity
anomaly information due to data outside a cap of given radius: for example,
using a truncation radius of 3° leaves a 0.9 mgal remote zone anomaly at
altitude 30 km, 1.8 mgals at 60 km, 2.8 mgals at 100 km, and 3.8 mgals at 150
km. A combined interpretation of Figures 3a and 3b says that the higher the
point of upward continuation the larger the data cap needed to maintain a
desired accuracy level (Figure 3b), however, at the same time the resolution
needed for data inside the cap becomes less and less with altitude (Figure
3a) - this conclusion is well-known and is true for the computation of all
gravimetric quantities in space. Finally, Figure 4 gives the degree variances
of the anomaly field at altitudes 30, 60, 100 and 150 km to show the effect of
upward continuation on component powers of the field.
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5. Global Characterization of Anomaly Fields

A most common statistical characterization of anomaly fields can be made by
giving the degree variances of the field, which gives the break down of field
power by wavelength. Given the degree variances Cpgp on a sphere of radius
R, the degree variances on an external sphere of radius r is given by using
(2.1.5) and analogous derivations to Heiskanen and Moritz (1967, p. 260-261):

2
Cnr = s™?2 Cpg ; 8 = [PF‘] (5.1)

The factor sft? indicates how each component wavelength power of the field
attenuates with the upward continuation distance (r-R). Note that the degree
variances Cpp correspond to the power of field features on a sphere of radius
R, these features having a minimum half-wavelength of approximately:

A= ﬂ; (linear units) (5.2)

- A second field characterization is obtained by summing the degree
variances of the field above a specified degree N. This sum gives a measure of
the amount of field information (RMS) beyond the harmonic degree N:

Sag2(N) = Z Cnr (5.3)
n=N

The sum (5.3) is important because given the resolution N of a particular field
approximation, the sum indicates how much field information (RMS anomaly) is
left unresolved by the approximation.

A third method of global characterization is obtained by giving the mean
square upward continued anomaly on a spatial sphere, caused by boundary
values of ag outside a cap of radius ¥,, for various heights of the spatial
sphere. This mean square anomaly is the same as the mean square anomaly of
the truncated field defined by (4.8) and can be obtained from (4.20) by using
only the second term of that formula and starting the summation from n=2:

SAgE(L, ¥,) = z qA(t, ¥o)Cng (5.4)
n=2
R
t= (7]
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For a second application of (4.20) we introduced the Rapp-180 field to
account for the remote zone effects (Npax=180). In addition we used a more
optimistic set of errors associated with the Rapp-180 potential coefficients,
found by using myg=10 mgals instead of 20 mgals in equation (30) of Rapp
(1981). Again using the Tscherning/Rapp Cp-model and upward continuation
distance of 30 km, the total error (commission plus omission) incurred by using
:~ the Rapp-180 field to account for remotc zones were computed by (4.20) for
- various truncation cap radii and plotted as the bottom curve of Figure 2. We
(- see that now the total error is drastically reduced compared with the case of
- the top curve where no spherical harmonic model is used to account for remote
. ' zones. For a truncation radius of 3°, the error reduced from RMS 0.9 mgal to

RMS 0.1 mgal. For a truncation radius of 1°, the bottom curve of Figure 2
shows that the use of the Rapp-180 field to account for the remote zone field
incurs a commission plus omission error of 0.45 mgal global RMS.

[ Note that Figure 2 represents a global error analysis that may not be

representative of a local area. Figure 1 is more suited for analysis of specific
[‘ areas. For example, Figure 1 says that for a truncation radius of 3° it is
3 immaterial whether we use the Rapp-180 field to account for the remote zone or
{ not because the Rapp-180 truncated contributions are small anyway. On the
- other hand Figure 2 says that not using the Rapp-180 field at truncation angle
- of 3* causes an ommission error of 0.9 mgal RMS, and the use of Rapp-180 field
*. decreases this error to 0.1 mgal (commission plus omission error).
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7. Operalional Program for the Generation of Anomaly Fields

In this section we summarize the programs that can be used to
operationally generate the different types of anomaly fields we use in this
report. These anomalies are the Poisson anomaly, the spherical harmonic
anomaly, the topographic anomaly, and the Fourier anomaly.

What we call the Poisson anomaly field is generated in planar approximation
as (2.3.1). A Poisson anomaly field can be operationally generated using a
FORTRAN program fully documented in Rapp (1966). The program accepts 5’x5’
mean anomalies as boundary values in the flat-earth upward continuation. For
a more detailed field generation smaller blocks of 2!5x2!5 mean anomalies may be
input near the computation points, and the program then automatically rejects
any 5’x5’ mean anomalies covered by the input 25x2!5 values. The program
also has the wuseful feature of rigorously computing the normal gravity
corresponding to the anomalies being computed, the sum of these two quantitics
being a model for observed total gravity. The program exists as program F499
in the OSU program library.

For the generation of spherical harmonic fields, there are two types of
existing operational programs that can be used. If the intention is to generate
anomaly wvalues at individual points not on a grid, the program described in
Rapp (1982) can be used. If, however, values on a limited grid are desired
then the program described in Rizos (1979) can be used. The program by
Rapp, to generate values at individual points, exists as program F477 in the
OSU program library, and the program by Rizos, to generate values on a grid

Pamiale n_onn . gae o et B0 o
r

; exists as program F388. A comparison of these and other spherical harmonic
programs is given in Tscherning et al. {(1983). The input to F477 and F388 are
k the set of potential coefficients and the geodetic latitude, longitude and height
above the reference ellipsoid (¢, A, h) of computation points. The set-up of the
:. programs is to implement equation (2.2.2); however, for reasons stated below
3 equation (2.2.2), we have slightly modified F477 and F388 for our applications

to compute (2.2.3) instead.

Another anomaly field .f interest to us is the topographic anomaly field,

generated by intergrating the gravitational effects of topographic masses of

assumed density.  The operational generation of a topographic anomaly field
can be done using the FORTRAN program described in Forsberg (1984) and
existing as QSU program 489. There are various modes under which the

program runs, as detailed in Forsberg (ibid.), but the most important one for
the purpose of our studics is that for computing the external gravity anomaly
field generated by the (positive and negative) residual masses lying between
the actual topography defined by a digital elevation model, and a reference
topography such as the topography to 180 spherical harmonic expansion.
Another mode of interest to the procedures recommended in this report is the
terrain correction {tc) computations which will be needed in case the tc are not
given on the gravity data records.

Finally, by Fourier anomaly we mean an anomaly which is upward continued
uging Fourier transform techniques., For the generation of a Fourier anomaly
ficld we usced a simple program given in Appendix B and existing as 0OSU
program F498, The theory behind Lhis program is detailed in Section 2.4 and
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tests are conducted in Section 9.3. A more extended program for Fourier
upward continuation exists in the OSU Department of Geology (R. von Freesc
private communication), and this program has options to choose from among
several different windowing techniques. However, our tests with this program
have not shown a need for the application of windowing for gravity anomaly
upward continuation.
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8. Data Preparation for Upward Continuation Tests in New Mexico

For testing alternative models for the operational upward continuation of
surface free-air anomalies, we prepared data in a 7°x9° area in New Mexico.
The location of the area is such that it centers the site of the balloon-borne
gravity project coordinated by the AFGL (Lazarewicz, et al., 1983), with surface
data coverage extending 300 km on all sides of the balloon flight.

8.1 Available Gravity and Elevation Data ]

Our gravity and elevation data was based on that supplied to us earlier
{April, 1983) by the National Geodetic Survey (NGS). The gravity data were in
the form of irregularly distributed point values of surface free-air anomalies,
as shown in Figure 6. The gravity data record included the following items
(Hittelman et al., 1982):

» I i :

v o

(1) Geodetic latitude (¢), geodetic longitude (A\), and orthometric height (H) of -
the station. o]

LI A e e

PP Y

3 (2) Measured gravity (g) referenced to a recoverable base station. Base

@ stations had been adjusted to the International Gravity Standardization 4

. Network 1971 (Morelli, et al., 1972).

- (3) Normal gravity (7) at the Geodetic Reference System 1967 (GRS67) reference

i ellipsoid, computed as: °, {
v = 978031.85(1 + 0.005278895 sin? ¢ +

+ 0.000023462 sin* ¢) mgals (8.1.1) o

o
(4) Surface free-air anomaly (Agg) computed as: L

I YA ~ O
-

Agg = g + 0.3086 H - v (8.1.2)

where 0.3086 mgal/m is the normal gradient of gravity.

‘ {
fp (5) Simple Bouguer anomaly (Ag’p) computed as: -1
X ag'p = Agg - 0.1119 H (8.1.3) o
"’ where the term 0.1119 H is the attraction of a Bouguer plate of standard R
- ‘ continental density of 2.67 g/cm?. T
- DN
- (6) Terrain correction (tc) formally given by (Moritz, 1966, p. 88): Bt
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te % ko B2 [ | &*‘*gﬁ do (8.1.4)
o

where k = Newtonian gravitational constant, p = density; R = mean earth
radius; H = elevation; P = point to which tc refers; ¢ = unit sphere;
do = element of solid angle; ¢, = 2 R sin ¥/2; ¥ = angular distance between
P and do.

(7) Standard error of Agg and ag’g.

(8) Various codes: Agency code, quality code, elevation code, and source
code.

There were a total of 18,386 original gravity points in our area. Out of these,
13,455 were NGS coded as ‘ACCEPTED’ while 3,931 were coded as 'NOT EDITED’.
We decided to consider all the 18,386 points regardless of code as input to the
data thinning step (see Section 8.2 below).

The elevation data were in the form of 30x30 arcsec grid point values. The
data covered our 7°x9° New Mexico area except at three 1°x1* blocks in the
southwest corner from latitude 29° to 30° and longitude 251° to 254°. We
decided to fill these missing blocks by 5'x5’ mean elevations from data supplied
by the Defense Mapping Agency (DMA). The NGS data were used in our
procedures both as the original 30"x30" point values and to obtain 5'x5’
averaged values. The 5'x5' mean elevations were formed by straight averaging

all 30"x30" wvalues that fell indide the 5'x5’ block (disjoint averages). A

contour map of the topography in our area based on 5'x6' mean elevations is
shown in Figure 7 for a contour interval of 50 meters.

8.2 Data Thinning

The original set of 18,386 NGS points shown in Figure 6 were input into a
data thinning procedure. This step was done to make the data distribution
more uniform and to later avoid collocation inversion problems associated with
data points that are very close together. To thin out the data a single pass
was made to select only the first point that fell inside each element of a
3.5 km 3.5 km (4¢ = 2!0, &AXx = 2!5) grid mesh. After the thin out procedure a
total of 10,208 data points were left. Of these, 2 points were later discovered
as blunders and removed leaving a final selection of 10,206 points which are
shown in Figure 12 of Section 8.7.

3.3 5’x5’ Mean Anomalies

A mean anomaly can be derived by first subdividing the mean block into
pxq sub-blocks, predicting point anomalies at the centers of the sub-blocks,
then averaging the predicted point anomalies. A predicted point anomaly is
given by least squares collocation as follows: (Rapp, 1978, p. 134):
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Figure 7. Topography, New Mexico Balloon Gravity Test Site. C.I. = 50 meters.

52

LT A S S A ST Sl . I Sl S P U LA b o PSS TR T G S S G Pl W O N W W W R WA PN S T S S S

RIS W

e

[ T D

Py

e
.-‘
e




T - )
agi = Cij (Cjj + Djj7" g (8.3.1)
where
Cij anomaly covariance vector between the point i being predicted

and the data points j.
Cjj anomaly covariance matrix of the data points

Djj error covariance matrix of the data points, taken as diagonal
with elements the variances of the data points.

Aspects on the covariance function to use in (8.3.1) and on the removal of

known trends in 3gj are discussed separately in Sections (8.4), (8.5), and
(8.6).

The mean anomaly is related to the pxqg center point values inside the
block by

1 X
g = —— 5 Ag: 8.3.2
g pXa 281 { )

1=1

Substituting (8.3.1) into (8.3.2) we get

3g = Ot (Cyj v Dt eg (8.3.3)
where
1 X
—T - | - . .
v p—— 5 Ci j (8.3.4)
i=1

is approximately the covariance vector between the mean value and the data
points j. Equation (8.3.4) expresses a numerical integration procedure
(Heiskanen and Moritz, 1967, p. 277) for the determination of mean value to
point value covariance using a gxq subdivision of the mean block. Equation
{8.3.3) expresses the direct prediction of the mean anomaly from given point
anomaly data. The standard error of the predicted 3y is the square root of:

mi— = C c—=.T (cj; + pjj) " C—=
i Cig * Dy

- . (8.3.5
Ag ~ “aghg g agj ' )

where CA is the variance of the mean value being predicted, given
approximgegly by
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1 X X
- C: 8.3.
YTy (pxq)? j 5 ik ( 6)

that is, CKEEE is the average of all covariances between subdivision block
center points 1nside the mean block.

For our applications to be detailed later (Section 8.7) we used equations
(8.3.3) to (8.3.6) to predict 5’x5’ mean anomalies from the the thinned out data
of Section 8.2. We used a 2x2 block subdivision (p=2, q=2) and only the ten
closest data points to the center of the 5'x5’ block being predicted. The
limitation to ten data points was motivated by the computer expense required .
to invert the matrix in (8.3.3) with dimension equal to the number of data h
points. This (approximate) collocation from the ten closest data points was
compared with a more rigorous but much slower collocation, giving a mean
difference of 0.1 mgal and an RMS difference of 2.7 mgals for a 12x12 array of
prediction points in the data sparse 1°x1° area from latitude 30° to 31° and
longitude 254° to 255° (See Figure 12 for daia distribution). The predicted .
quantities were refined Bouguer anomalies with roughness (standard deviation *
from the mean = 15 mgals for the 1°x1° test area) shown in Figure 13. The
differences between the rigorous and approximate collocation are expected to
get smaller in the immediate area of the balloon flight because of the increased
density of data there. The rigorous collocation used a one-time inversion of a _
matrix of size 524x524, giving data coverage out to 0.5 away from the ]
prediction points while the approximate collocation used 144 inversions, with
each inversion involving a 10x10 matrix. The rigorous collocation was about
100 times slower than the approximate collocation in this test case. ;

PRSP

Theoretical and practical aspects on the choice of covariance functions to

use in (8.3.3) and ways to de-trend the data are discussed in the next three
sections.

L
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8.4 Covariance Function

The covariance function to use in (8.3.1) or (8.3.3) is well-defined only in
the global case. However, for local applications the choice of covariance
function to use is rather arbitrary. This arbitrariness comes from the fact
that the covariance function to use should be tailored to approximate the local R
empirical covariance function, and this local function has no clear-cut
theoretical definition. The most important questions are: what size of local
area should be used to derive the function?, and what trends should bhe N
removed from the data? Once a practical decision has been made on these two '
items, however, the estimation procedure becomes clear: The empirical
covariance function is first derived by averaging products of de-trended data
samples in the specified area, according to the definition of covariance function
(Heiskanen and Moritz, 1967, p. 253). The derived empirical covariance function
1s then usually approximated by a simple analytical function that lends itself to
closed form covariance propagation if needed, resulting in a self-consistent
system for the estimation of various linear functionals of the earth’s anomalous
potential. The way to approximate an empirical covariance function by an

P .
_lalaia.a A
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analytical function of specified form, is by satisfying the three essecntial
parameters of the empirical function, namely, the variance, correlation length,
and curvature parameter (Moritz, 1980, p. 174).

For our applications we used a simple tailoring procedure for the covar-
iance function. We took the global anomaly covariance function of Tscherning
and Rapp (1974) and first subtracted the first 36 harmonics. This resulted in
a new covariance function with a correlation length of about 20 km, approx
imating the correlation length of the de-trended data (see below) used in our
estimation procedures. The covariance function was then scaled to satisfy the
variance of the de-trended data. This scaling would not affect the previously
tailored correlation length. For the curvature parameter, there was no specific
treatment given to satisfy the data; the practical problems associated with the
empirical computation of the curvature parameter, as well as its approximate
computation by finite differences, can be found in Schwarz and Lachapelle
{1980).

8.5 Data De-Trending at High Frequencies

It is well-known that short wavelength free-air anomalies are strongly
correlated with short-wavelength topography - for an instructive physical
interpretation of this fact using a simple crustal density and isostatic com-
pensation model, see Moritz 1968, p. 28. Therefore, the computational removal
of the attraction caused by topographic masses is certain to remove most of
the roughness that may be present in an anomaly field.

This removal of roughness of the field is very important in interpolation
problems. With the removal of as much roughness as possible, the correlation
length of the residual field will be enlarged as much as possible. This implies
that the ratio

correlation length
mean data spacing

p =

will also be enlarged as much as possible, and this is a key to strengthening
the interpolation of the residual field (see Sunkel, 1981, pp. 88-93, where
values of p of at least p=3 are indicated to be desirable). Of course, onne the
interpolated wvalue from the residual field has been obtained,the total field
value can be obtained by adding back the influence of topographic masses.
This influence is computable from detailed topographic height data which are
assumed to be readily available in the prediction area.

Anomaly data de-trended at high frequencies can be the simple or Lhe
refined Bouguer anomalies. The simple Bouguer anomaly is given by (8.1.3):

8p’ = ag. - 0.1119 H (8.5.1)
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where -0.1119 H means the removal from surface data Agg of the gravitational
attraction of a moving Bouguer plate of standard density 2.67 g/cm?®. The
refined Bouguer anomaly is given by:

agg = agg - 0.1119 H + tc (8.5.2)

where tc is the gravimetric terrain correction formally given by (8.1.4).
Whereas (8.5.1) represents the removal of a moving Bouguer plate, the
application of tc to (8.5.1) to arrive at (8.5.2) means that now in (8.5.2) the
gravitational attraction of the actual (non-moving, fixed) topography is removed
from Agg. The tc were given for our NGS gravity data; if they had not been
given, we would have had to compute them using the operational program by
Forsberg (see Section 7). Such computations of tc tend to be expensive (about
0.2 CPU sec per point on the Amdahl 470 V/6 system) if they have to be done
for all observation points. In this respect the studies by Sideris {1984) on the
computation of tc by Fast Fourier Transforms (FFT) should prove to be very
important.

8.6 Data De-Trending at Low Frequencies

The Bouguer anomalies produced by (8.5.1) or (8.5.2) are much smoother
than the original agg field but are biased, having large and systematically
negative values in mountainous areas - again, it is instructive to see Moritz
(1968, p. 28) for a physical explanation of this fact using isostatic compensatior
theory. In accordance with the statistical aspect of the least squares
collocation interpolation procedure, gross trends should first be removed from
the data before interpolation (see Moritz, 1980, Sec. 38: "The Meaning of
Statistics in Collocation”). To de-trend the Bouguer anomaly data, one way
would be to postulate a low order trend surface and fit this surface to the
data, possibly in the context of least squares collocation with systematic
parameters (Sunkel, 1983), or possibly in the context of a simple least squares
ad justment. For our purposes we de-trended the Bouguer anomaly data using
available spherical harmonic expansions to 180 of free-air anomaly and topo-
graphy. The effect that the de-trending at low frequencies has on inter-
polation results is described later under Section 8.7, step (7).

The free-air anomaly on an equatorial sphere can be generated from
potential coefficients to degree Npgx, using (2.2.3) with Hq=0:

KM Nmax n _ _
8gS = 5 2 (n-1) z (CXp cos mA + Spp sin mA) Ppp (sin o) (8.6.1)
n=2 m=0

(the superscript s denotes spherical harmonics). The topography can also be
expanded in terms of spherical harmonics to degree Npgx:
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Nmax 4]

HS = E é (Apm cos mA + Bpn sin mA) Pup (sin @) (8.6.2)

=0 m=0

We then have a Bouguer anomaly to resolution corresponding to harmonic
degree Nmpax:

Agg = agSs - 0.1119 HS (8.6.3)

Subtraction of the reference Bouguer anomaly AgSp from the Bouguer anomaly
in (8.5.1) and (8.5.2) gives, respectively, the residual Bouguer anomaly (8.6.4)
and terrain corrected residual refined Bouguer anomaly (8.6.5) (see equaticon
{3.3.13) for a fuller understanding of equation (8.8.5)):

agl’ = (agg - 0.1119 H) - (agS - 0.1119 HS) (8.6.4)

(agl + tcS) = (agg - 0.1119 H + tc) - (4gS - 0.1119 HS) (8.6.5)
The last two equations can also be written as

»

agl’ = agg - 4gS - 0.1119 (H - HS) (8.6.6)
(48T + tcS) = agg - 4gS - 0.1119 (H - HS) + tc (8.6.7)

The last two equations state that the original anomalies Agg are de-trended (1)
in the long wavelength, by subtracting free-air anomalies AgS generated from
spherical harmonic expansion; and (2) in the short wavelength, by doing
"Bouguer reduction” not with respect to the geoid but with respect to the
higher order but still smooth surface HS from spherical harmonics.

In accordance with the previous discussions we took the following steps to
predict 5’x5’ mean anomalies, for use in our anomaly upward continuation
procedures. The starting anomaly data were the point surface ({ree-air
anomalies (look ahead to Figure 12 for point location), resulting from the thin
out procedure of Section 8.2. As stated in Section 8.1 the gravity record also

contained the elevation H of the station and the terrain correction tc. Uere are
the various steps:

{1) Reference free-air anomalies AgS (8.6.1) were generated on a 0125x0n25 grid
using the Rapp-180 (Rapp, 1981) potential coefficients with Npax=180. A con-
tour map of this data is shown in Figure 8 with a contour interval of 5 mgals.
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Figure 8. Rapp-180 Gravity Anomalies at Zero Altitude, New Mexico Balloon
Gravity Test Site. C.I. = 5 mgals.
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Reference elevations HS (8.6.2) were generated on a O25x(n2% grid using
ographic coefficients available at OSU (tape GS140, file 15} with Njax=180. A
itour map of this data is shown in Figure 9 with a conlour interval of 50
lers.

Reference Bouguer anomaly values 8gSp (8.6.3) were generated on =n
5x0n25 grid from the agS and HS of steps (1) and (2). This data is contoured
Figure 10 with a contour interval of 5 mgals. In our procedures we could
o generate 4gSpg directly in one step because we had combined the two
‘ies in (8.6.1) and (8.6.2) to produce a Bouguer anomsaly series to degree 180,
A its own Bouguer anomaly spherical harmonic coefficients.

Refined Bouguer anomalies 8gp (8.5.2) were computed at the irregularly
itributed data points using Agg, H and tc given on the gravity records. The
S value of the original irregularly distributed 4gg was 26 mgals. The RMS
lue of the refined Bouguer anomalies agp with the mean removed was higher,
mgals, because although &gp was smooth it had significant long wave trend.

Terrain corrected residual refined Bouguer anomalies agl , tcS (8.6.5) were
mputed at the irregular data points by first interpolating the 0:25x(P25 grid
AgSg from step (3) to obtain the reference Bouguer anomaly at the data
int, then subtracting this reference value from the refined Bouguer anomaly
step (4).The RMS value of the irregularly distributed anomalies (ag?é , tcS)
is a smooth and centered 15 mgal.

) 5’x5’_mean values of terrain corrected residual refined Bouguer anomalies
,6.5) were predicted from the data of step (5) using the "collocation from the
ysest 10 points” procedure described in Section 8.3. To repeat, a 2x2
bdivision of the 5'x5' block was used. The covariance tailoring procedure
ed is described in Section 8.4. A contour map of the predicted 5'x5’ mean
sidual refined Bouguer anomalies is shown in Figure 11, with a contour
terval of 5 mgals. Note that this de-trended anomaly surface is much
wother and, therefore, much more reasonable to interpolate than the trended
iginal agg surface (look ahead to Figure 14). The point location of the
regularly distributed data from which 5’x5’ predictions were made, as well as
e formal standard errors of predicion coming out of the collocation
‘ocedure, are shown in Figure 12. The collocation error estimates shown are
least correct on a relative basis, but also their absolute values are expected
be meaningful because of the use of an empirically tailored covariance
nction (Schwarz and Lachapelle, Y980, p. 33).

) A "back solution” could now be made starting from the predicted 5’x5’
:an values of step (6). 5'x5’ grid point values of agSp (8.6.3) were first
terpolated at the centers of the 5'x5' mean blocks of step (6) using the
25x(n25 grid of agSp values from step (3). These interpolated values were
en added to the values in (8.6.5) from step (6) to produce 5'x5’ mean values
_refined Bouguer anomalies agp (8.5.2), contoured in Figure 13 with a contour
terval of 5 mgals. The difference between the Bouguer anomalies in Figures
! (from this step) and 11 (from step (6)) is the presence of long wave
ruguer anomaly trend in Figure 13.

To test the significance of de-trending at low frequencies we repeated the
~edictions of the quantity shown in Figure 13, this time using the simple data

reragte ns reference value, instead of the "Bouguer anomaly to 180",  The
warmance function of step (6) was accordingly scaled to reflect the variance
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le 6. Statistics of Upward Continued Terrain Correction, (t:c:,);l.){o

Altitude
of Upward
Continuation (Ho) Mean Std. Dev. RMS
28.5 km 0.38 mgal £0.6]1 mgal 0.7]1 mgal
8.5 0.52 (.65 0.82
3.5 0.70 (.66 0.94
0.0 0.72 £].16 1.32

: relatively fast decrease of standard deviation from 21.16 mgals (Ho=0 km)
t(0.66 mgals (H,=3.5 km), illustrates that tc, has energy in the very high

quency range, and this energy gets lost by attennuation at a very short
ward continuation distance H,.

As stated in Section 8.7, the terrain correction has a very short correlation
gth, but it also contains a weak long wavelength signal. This long
velength signal attenuates rather slowly with altitude, and shows up in Table
18 some significant effect (RMS 0.71 mgal) even at 28.5 km altitude.

.2 Direct vs. Indirect Upward Continuation_Terms

To analyze further the numerical differences between the direct and
lirect upward continuation methods, let us first review what we did in the
lirect method. First we performed the following split of the surface free-air
smalies:

Ags - Aglh + agsS + agt (9.2.4)

ere Ag8 15 the spherical harmonic contribution, Agt is the influence
atributed by topographic masses, and AgF is the residual anomaly. Then to
th sides of (9.2.4) we added the terrain correction tcS of the reference

rography HB (for HS we used a topography to spherical harmonic expansion
)):

(3gg + teS) - (8gF + tcS) + ags + agh . (9.

xS
[}
-
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into the causes of the numerical differences between the direct and indirect
methods.

For visualization Figure 15a shows the 60-point terrestrial anomaly profile
and its upward continued version at altitude H,=28.5 km. Correspondingly the
Rapp-180 anomaly profile at the ground level and at altitude 28.5 km are shown
in Figure 15b.

9.2 Other Studies

This gection presents other studies that we conducted using the data in
New Mexico. The objective is to give more information on the numerical aspects

of various procedures related to upward continuation of surface free-air
anomalies.

9.2.1 Formally Upward Continued Terrain Correction

For the direct method we had the terrain-uncorrected version:

(8gs)Ro - Up{ags} = gﬁ f f %%S dxdy (9.2.1)
A o

and the terrain-corrected version:

(4gs + to)ffy = Up(ags + tc) = 22 [ [ iﬁgs—égﬁgl dxdy (9.2.2)
A o

The numerical difference between these two versions of the direct method is:
D D D
(Ags + tc)Ho - (AgS)Ho = (tCI)Ho ] (9'2'3)

that is, the upward continued terrain correction. The subscript "1" is used in
(9.2.2) to indicate that the terrain correction tc, i8 not equal to the true
terrain correction but is rather a terrain correction that contains errors
cauged by the errors in the individual predicted quantities dgg and (agg + tc).
In other words tc,, formed as the differences between predicted agy and
(Agg + tc), can be called a "predicted"” terrain correction. A comparison of tc,,
with the rigorously computed tc has already been given in Section 8.7. For
the upward continued tc,, i.e. (tcl)DHo we found the statistice shown in Table
6. The statistics were found for various upward continuation distances H,,
using the 60-point upward continuation profile described in the previous
section and 5’x5’ tc, data in the 7°x9° New Mexico test area.
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9.  Numerical Investigations

9.1 Comparison of Direct and Indirect Upward Continuation Results

We applied the indirect and direct upward continuation methods described
in Section 3.3 to our 7°x9° study area in New Mexico. Figure 7 on page 52
shows the topographic features in the area. Upward continuations were done
for a 60-point profile running east-west from longitude 253° to 258°. Upward
continuation distances used were H,=28.5, 8.5, and 3.5 km. These rather odd
values of H, resulted from considering the data to be at a mean elevation of
1.5 km and the uplifted profiles to be at 30, 10 and 5 km elevation. The 60
upward continuatuation points were located at the centers of the 5’x5’ mean
data blocks directly beneath the profile. Although 60 points were used, it was

sufficient to present results only for every 6th point giving 11 presentation
points.

The entire 84x108 grid of 5'x5’ mean anomaly data (Section 8.7) sad 5'x5’
mean elevation data (Section 8.1) covering the 7°x39° area were used in upward
continuations. The types of anomalies used were the terrain corrected residual
refined Bouguer anomalies (AgT+tc8) for the indirect method, and the surface
anomalies Agg and terrain-corrected surface anomalies (4g8® + tc) for the direct
method. The detailed lkm x lkm point elevation data (Section 8.1) were used
near the computation points for the prism integration of the attraction of
topographic masses needed in the indirect method. Also for the purpose of the
indirect method, the Rapp~180 potential coefficients and a set of degree 180
spherical harmonic coefficients for the topography (Section 8.6) were used to
generate reference values of gravity anomalies and topography. The opera-

tional programs used in the numerical investigations are described in
Section 7. -

. L
PRV AT ot

Tables 3 to 5 give the results of the indirect and direct upward continu-
ations for the 11 presentation points, for H,=28.5, 8.5, and 3.5 km. Columns 1 o
to 3 of the tables give the three components of the indirect method, namely (1) N
anomaly contribution from the medium wavlength part of terrestrial data, (2)
anomaly contribution from the long wavelength spherical harmonic field, and (3) -4
anomaly contribution from shallow topographic masses. Column 4 gives the

total anomaly (Agg + tc8) from the indirect method (see page 20 for the
rationale behind the use of tc8).

The results from the indirect method were compared with those from the ")
direct method, with differences shown in columns 5 and 6 of Tables 3 to 5.
Column 5 shows that the direct method using the surface anomalies alone (4gg) r

produces a profile that is systematically too low compared with the expectedly
more rigorous profile of the indirect method. The biases have mean values of
0.64 mgal (H,=28.5 km), 0.54 mgal (Ho=8.5 km), and 0.71 mgal (Hy=3.5 km).
Column 6 shows that the use of terrain-corrected surface anomalies (aggttc) in
the direct method improves the bias of column 5 down to 0.03 mgal (H,=28.5
km), 0.11 mgal (Hy,=8.5 km), and 0.06 mgal (H,=3.5 km). The standard deviation
of the differences of columns 5 and 6 (direct method) with column 4 (indirect
method) also improves slightly with the use of (Aggttc) instead of Agg in the
direct upward continuations. In the next section we will make further studies
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found by Forsberg, 1984, p. 82). A theoretically better aliernative would have
been to take the Faye anomalies of step (8) and subtract rigorously computed
tc values using Forsberg’s (Section 7) program, but this alternative would be
prohibitively expensive at the present time. A possible way out of this

expense would be the development of FFT techniques to compute tc {Sideris,
1984).

The "predicted” tc of step (9) was brought to light as follows:

Y€ predicted) - (*8s * Y)gmpp(g) ~ #sspp(g) (8.7.1)

Values of tc(predicted) were taken in the 1°x1°® area from latitude 32° and 33°
and longitude 254° to 255°, and these values compared with rigorously
computed tc from Forsberg’s program. We found the following statistics using
a 6x6 grid of comparigson points (units: mgals):

Difference Actual Value
Statistics tc(predicted) - tc(rigorous) tc(rigorous)
Mean -1.18 2.68
Std. Dev. 2,69 £2.95
RMS 2.06 3.99
Maximum Absolute Value 6.06 14.38

On average, one can say from the above table that 50% of the true
tc-information has been recovered in the prediction. Inspection of the actual
differences which are not given here reveals that the general shape of the
tc~-function can be reasonably predicted, but that a reasonable prediction of
detailed features basically relies on the chance that there is a data point close
to the prediction point. One could expect that for a reasonable prediction of
detailed features of tc the data spacing would have to be much less than the
correlation length of tc in the area, say, one-third the correlation length; this
i8 indicated from the discussions of Sunkel (1981, pp. 88-93) who gives general
data density requirements as a function of the correlation length of the
function being interpolated.
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of the "mean-value centered” data, which was 2400 mgal?. For comparison, let
us distinguish two prediction procedures as follows:

Method A: Bouguer anomaly to 180 used as a reference surface. Variance of
data used in predictions: 225 mgal?.

Method B: Simple average used as a reference value. Variance of data used in
predictions: 2400 mgal2,

We observed the following:

(a) In areas with good data coverage (i.e., areas with standard error of
prediction less than or equal to 5 mgals as shown in Figure 12), the
predicted values from Methods A and B generally agreed to better than 0.2
mgal.

(b) In areas with poor data coverage (standard error greater than or
equal to 10 in Figure 12), differences of 7 mgals were observed between
Methods A and B. In these areas the used reference value "anchors" the

predicted value, in the sense that the predicted value tends to approach
the :eference value.

(c) The most significant difference between Methods A and B, affecting
both areas of good and of poor data coverage, was the scaling of the
formal error estimates. Error estimates from Method B were more
pessimistic than Method A, by the ratio (2400/225)%.

From the above we conclude that the advantage in using a higher order trend
surface than the simple-average surface lies in a better scaling of the error
estimates; the predicted values themselves are not critically affected by the
choice of trend surface for areas of reasonable data coverage.

(8) To the 5'x5’ refined Bouguer anomalies (8.5.2) from step (7) we added
0.1119 H, where the elevations H were the 5'x5’ mean elevations mentioned at
the end of Section 8.1. In accordance with (8.5.2), the results would be 5’x5’
mean values of terrain_ corrected (i.e. Faye) surface anomalies (4gg + tc),
contoured in Figure 14 with a contour interval of 5 mgals. Throughout our
procedures we of course assumed that 5'x5' mean values of free-air anomalies
referred to 5'x5' mean elevations, and this assumption is justified because of
the strong local correlation between point free-air anomalies and elevations; for
a further discussion of correspondence between mean free-air anomalies and
mean elevations, see Sunkel, 1981, p. 5.

{9) It was also of interest to our studies to predict 5’x5' mean anomalies
without having first applied the terrain corrections to the irregular data Agg
in step (4). In other words, we essentially repeated all the de-trending,
prediction, and back solution steps working with simple Bouguer anomalies
given by (8.5.2). The end results analogous to those of step (8) were 5'x5’ R
mean values of (terrain uncorrected) surface free-air anomalies 8gg. oy

REMARK: Note that implicitly in step (9) we carried the quantity "-tc" (present
in the original 8gg data) through the prediction procedure. Therefore,
implicitly we attempted to predict 5'x5’ mean values of "-tc" which would have
to be very inaccurate because of the very short correlation length associated
with the terrain correction (correlation lengths on the order of only 2!5 were
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Then we indirectly upward continued (Agg + tcS) ac [lollows:
I D t
(8gg + tcS)fo = (8gF + tcS)|, + Agho *+ 48Ho » (9.2.6)

that is, the indirectly upward continued value is the sum of three separately
upward continued terms: the first term is a direct upward continuation by the
Poisson integral; the second term is an upward continuation in the spherical
frequency domain; and the third term is an upward continuation by the prism
integration of the gravitational influence of topographic masses.

In the comparison stage (Tables 3, 4, and 5) we get a good mean value
agreement between the set of results from the indirect method and those from
the direct method that used the terrain-corrected surface anomalies (aggy + tc).
The latter set of results could be conceptually obtained by adding tc to both
sides of (9.2.4) then applying direct upward continuation:

D D D D
(Agg + tC)H, = (4gT + to)h, + (8gS)Ho + (88%)H, (9.2.7)

Therefore, to explain the numerical differences shown in Tables 3 to 5 between
(agg + tcS)IHo and (agg + t,c)DH0 we need to examine the differences between

the corresponding terms.on the right hand side of equations (9.2.6) and
(9.2.7).

A. Comparison of First Terms

The difference 4y between the two terms is:

AT = (agT + to)m, - (agf + tcS)R, = (tc - tes)T, (9.2.8)

As stated in (9.2.3) we were able to obtain some sort of predicted tc denoted
by tc,. On the other hand, the determination of the quantity of tc8 was
problematic in terms of computer time requirements; the get-up of Forsberg’s
program that we were using (Section 7) required 0.2 cpu sec. per point on our
AMDAHL 470 V/6 system, ancd we needed at least 84x108=9072 values of tcS5.
Therefore, we did not specifically perform an evaluation of A = (tc-tc®)Dy,.
However, the numerical comparison of the third terms below show that on
average Ay is .anceled out by the difference (denoted by Aj1]) between the
third terms (see equation (9.2.20)). In any case, we would expect (tc—tcB)DHo
to be small, because the long wavelength quantity tc8 will tend to cancel the
long wavelengths of tc (tc-tc8); ar we have seen in Table 6 only these long
wavelengths (and not the very short ones) would have had the chance to filter
through the upward continued value (tc—tcE)DHo.

e s A




B. Comparison of Second Terms

The second term of (9.2.7), which is (AgS)DHo, uses the spherical harmonic
series derived agS and upward continues this using the Poisson integral. The
second term in (9.2.6) conceptually uses the samc quantity 4gS but upward
continues it using the spherical harmonic series, upward conlinuation being
effected by multiplying the spectrum of agS by the factor (R/r)0*2, To
compare these terms we took the Rapp-180 field used in Section 9.1 and, with
program F388 of Section 7, generated 5'x5’ center-point values of 8g5 on the
equatorial sphere level. These values, taken as 5’x5’ mean values, covered the
7°x9° test area in New Mexico. We then upward rontinued the 5’5’ mean
values by Poisson integration (program F499, Section 7):

I AgS
o

and compared the results with the rigorously upward continued values
(program F388, Section 7):

180

D kM n+2 n _
(Ag3)1, = az g (n-1) ;Jr‘;-ol E (C¥p cos mx +
n=2 m=0
+ Spm sin mA\) Ppp (sin @) (9.2.10)

The implementation of equation (9.2.9) was done in two versions. In the
first version (called center-point kernel version) the contribution of a 5'x5’ ag$
to the upward continued value was obtained by multiplying 8g5 by the step
function evaluation of the integral kernel at the center point of the 5'x5’ block.
In the second version (called integrated kernel version) the 5'x5’ agS$ was
multiplied by the rigorously integrated value of the kernel inside the arca
covered by the 5'x5’ block (see Rapp, 1966, for specific equations). The
statistics of the differences a7 = (AgS)DHo - 4g%{, are shown in Table 7. The
statistics were obtained for the same eleven presentation points of the profile
used in Section 49.1. We observe that the integrated kernel implementation of
equation (9.2.9) can keep the error of (AgS)DHO under 1% of true value agSy,.

\ This is true down to the lowest upward continuation altitude tested which was

! Hozl km. The center-point kernel implementation, on the other hand, can keep

e the relative error under 1% down to 10 km, but below 10 km the usec of the

b integrated form is necessary since the tests show that the errors of the

t‘." center-point form reach 15% at 5 km and blow up at 1 km.

[. To conclude, the second term 4gSg, of equation 9.2.6 and the second torm ) 4

(g Py, of equation 9.2.7 are in close agreement, and therefore ' cir
difference app is not a major contributing factor to the differences found in

Section 9.l (Tables 3 to 5) between the direct method and the indirect method
of upward continuation. However, in spite of the small differences found '|
-
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between ag8y, and (AgS)DHo, the rigorous quantity Ag8y, is still advisable to
use (in an indirect method setting) because its evaluation does not increase the
computational burden very much and it has the advantage that in principle it
uses continuous and global data whereas (Ags)DHo {which is the implicit
evaluation in the direct method) uses a step function approximation of the
terrestrial data and a limitation of integration to within a finite data cap.

Table 7. Statistics of the Absolute Error Incurred in Using the Poisson
Integral for the Upward Continuation of the Rapp-180 Anomaly Field.
5'x5’ Center Point Rapp-180 Anomalies Used as Data, Covering the
7°x9° New Mexico Test Area. Units: mgals.

; Altitude of True AgS Brror Error
Upward ~Ag180 (Center Point (Integrated
Continuation =Ag Kernel Used) Kernel Used)
Ho=30 km Mean= 7.38 0.05 0.03 ‘
' 5.D.=16.17 £0.08 £0.07 -
S = 9.43 0.09 0.08 R
10 km 9.02 0.05 0.08 ji
i +9.83 £0.06 20.13 ;
13.01 0.08 0.15 )
5 km 9.52 1.31 0.10 )
£11.05 £1.63 £0.13 b
» 14.20 2.03 0.16 ;j
1 km 9.94 107.46 0.03 ;
$12.15 +132.98 £0.03 :
15.27 166.20 0.04

> 4
|
» _ ) T
. C. Comparison of Third Terms )
Finally let us now turn to a comparison of the third terms, i.e. AgtHO in i
N (9.2.6) and (ag!)Py, in (9.2.7). The quantity agly, is the indirect, and :
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(Ag‘-)DHO the direct, upward continued value of Agl. In turn aAgl is given by
equation (8.7):

agt = 0.1119 (H - HS) - (tc - tcS) , (9.2.11)

where in our case the reference elevations H8 and terrain corrections tc8 refer
to a 180-expansion of the topography. We have the indirect quantity:

Agﬁo found by integration of the attractions caused at the
computation point by residual topographic masses sub-
divided into prism integration elements (see
Section 7 for operational program used);

and the direct quantity:

D 0. H - — - tcS
(agt)f, = B [ [ Q1119 (H-HB) - (te - L) 44 (9.2.13)
2n D
A [+]

A8 we indicated under equation (9.2.8) we did not evaluate tc8 because of . ’
computer time limitations. Therefore, we also did not evaluate (9.2.13) where -]
tc8 appears. However, tests of interest could still be conducted by dropping RS
some terms in (9.2.13); we used two versions: T

o]

t -

D H A o

e, =52 [ —g% dxdy (9.2.14a) ;

A o

with agl = agt - teS = 0.1119 (H - HS) - tc; (9.2.14b) N
-

.»;l

and -
.

1

t :1

t)D _ Ho 2gz .
(ag%)Ho o I f D3 dxdy (9.2.15a) 4

:

with agt = agt + (tc - tcS) = 0.1119 (H - HS) (9.2.15b) :
:

-]

Using our 5’x5’ data in New Mexico, various upward continuation distances S
(Ho=28.5, 8.5, 3.5 km), and the eleven presentation points of Section 9.1, we -
compared (9.2.14) and (9.2.15) against (9.2.12) and obtained the statistics shown
in Table 8. The statistics are given for the results of (8.2.12) and for the RERN
1
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differences: [equation (9.2.14) or (9.2.15)] minus (result of (9.2.12)]). We should
note that in view of the results of Table 7 we used the integrated kernel
evaluation for Ho, = 3.5 km, and simply used the center point kernel evaluation
for Ho = 8.5 and H, = 28.5 km to implement (9.2.14) and (9.2.15).

Table 8. Statistics of ‘gte'lo » and of the Differences ((agt,)Py, - agly,) and
((agt;)Pyo - g Ho)» in mgals. See equations (9.2.14), (9.2.15), and

(9.2.12).
Altitude of (i) D(z) . 63) .
U““ard . Agy, (Agtn:)ﬂo - Agy, (‘gg)ﬂo_ AgHo
Continuation (9.2.12) (9.2.14)-(9.2.12) | (9.2.15)-(9.2.12)
H,=28.5 km Mean=-3.11 -0.63 ~0.02
S.D.=t4.74 £0.51 £0.24
RMS = 5.49 0.80 0.23
8.5 km -3.71 -0.64 0.06
£11.24 £0.62 £0.58
11.34 0.87 0.55
3.5 km -3.39 -1.58 0.08
£15.57 £1.22 +1.04
15.23 1.30 0.99

The small mean differences in Table 8, column 3 imply that numerically:
t.D
M{Agﬁo} = M{(8€3) Hol » (9.2.16)

where M denotes the straight averaging operator, operating on the test point
samples. Therefore, for the difference (let us denote this difference by afyr)
between the third terms (9.2.12) and (9.2.13) we have the approximation:

Miar11) = M{(sgt) o - sgfio) & M{(agt)R, - (aeb)Bo) . (9.2.17)
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By virtue of (9.2.15b),
M{(AgH) - (ag5)o) = M{~(tc — t88)p,) (9.2.18)

Combining ((9.2.17) and (9.2.18) we finally have the approximate mean difference
between the third terms (Agt)DHo and Agt-Ho:

M(a1TT} = M{(agD) Do - aglio} & M(~(tc - tcS)f,) (9.2.19)
Combining (9.2.19) and (9.2.8) we have:
M{atrr} & M{ag}, or

M{a1 + ay1y} & O. (9.2.20)

From the discussions related to Table 7 we also learned that M{s1r} & 0, and
therefore the mean of the total difference A& = Ay + Ay + 471 is small, i.e.,

M{a} = M{ay + a1 + 87111} % O (9.2.21)

Equation (9.2.21) repeats the results of Tables 3, 4, and 5, namely, that the
mean difference between the indirect method, on the one hand, and the direct
method that uses terrain corrected surface anomalies (Agg + tc), on the other
hand, is small.

9.2.3  Sensitivity of Anomaly Fields to Changes in Upward Continuation
Distance H,

As mentioned in Section 3.3 (A) there is an uncertainty as to what value
of upward continuation distance H, to use in the Poisson integral. Recall that
H, is theoretically the vertical distance between the computation point P in
space and the level surface to which the anomaly data are assumed to refer.
The uncertainty in H, is caused by the fact that the given surface anomaly
data refer to a varying level surface, rather than to a single level surface.
Even in the case when the terrain correction is applied to implement an
approximate data reduction to a level surface, the position of the final
reference level is uncertain (see Section 3.3 (A)). In our final procedures we
simply assume that the reference level coincides with the mean elevation
surface in the area covered by our anomaly data. The error in upward
continuation distance H, that results from this assumption is expected to be
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related to the deviation of the actual topography from the mean elevations

surface. In this section we give a feeling for the sensitivity of our results to
the choice of value for H,.

The mean elevation in our New Mexico study area is about 1.5 km. For
sensitivity analysis we compared upward continuation results for the case when
the reference level for the data is assumed to be at the 1.5 km level, and for
the case when this level is assumed to be at the geoid (i.e., the 0 km-level).
The difference between the two cases is, therefore, the use of upward
continuation distances H, that differ by 1.5 km. We performed our comparisons
using the eleven presentation points of the profile in Section 9.1. The
statistics of the comparisons, for various values of H, and various types of
anomaly fields, are shown in Table 9.

Table 9 says, for example, that in the direct method that uses the total
field (agg + tc)DHo, (see (3.3.2)), an uncertainty of 1.5 km in H, for H,=30 km
directly causes an uncertainty of 0.43 mgal (3.8% of computed value) in the
upward continued anomaly. If data reductions are used, as in the indirect
method, such that only the residual part (agl + tcS)DHO is used (see (3.3.14)),
the uncertainty reduces to 0.19 mgal (4.2% of computed residual value). Table
9 also shows that the residual topographic field AgtHo (see (3.3.16)) is the part
of the total field that is most sensitive to changes in H,, the reason being that
agt contains the high frequency part of the field. This last sensitivity does
not introduce any error into the computations, since AgtHo has no problem
associated with defining an "upward continuation distance". Finally, Table 9
also shows that the spherical harmonic (long wavelength) component of the
field is the least sensitive to altitude changes.
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Table 9.

v T

Sensitivity of Sample Profile Anomalies to a 1.5 km Change in Upward

Continuation Distance H,, for Various Values of H, and Various Types
of Anomaly Fields.¥

Upward Total Residual Spherical Residual
Continuation Field Field Harmonic Topographic
Distance Field Field
D D s t
(Agg + tc)H, (agS + tc)g, AgHo AgH,
(3.3.2) (3.3.14) (3.3.15) (3.3.16)
Ho, = 30 km 11.32 4.49 9.65 5.49
0.43 0.19 0.24 0.27
3.8% 4.2% 2.5% 4.9%
Ho = 10 km 19.92 8.02 13.35 11.34
1.35 0.51 0.37 1.14
6.8% 6.4% 2.8% 10.1%
Ho = 5 km 23.70 9.41 14.59 15.23
2.15 0.73 0.41 2.29
9.1% 7.8% 2.8% 15.0%

¥Key to entries in table for each box:

(1) RMS value of profile anomalies at height H, (mgals).

(2) RMS change in profile anomalies when height H, is reduced by

1.5 km (mgals).

(3) Percentage ratio:

(2) + (D).

-l Al T
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).3 Fourier Computations

From the numerical point of view it is very attractive to use frequency
lomain processing. The theoretical equations are summarized in Chapter 2.4.
lere we will show how the Fourier Transform principle can be utilized in
ractice to upward continue the gravity anomaly field from one level surface to
wnother. It should be stressed here that the Fourier technique requires
:xactly the same assumptions as the flat Earth Poisson's integral. After all
‘hese two procedures give the unique solutions to the same Dirichlet problem
‘or half space ~ one in spatial the other in frequency domain. Fourier
.echnique is much cheaper in computational stage but requires the special care y
n controlling the edge effects. As our balloon experiment shows, these effects

ire ncegligible far from the edges where the upward continued value was
:omputed.

In practice the evaluation of upward continuation operator is done by
r~ans of digital Fourier transformation defined by (Robinson and Silvia, 1981,
:th. 3.3). (Notice that we define the forward transform with a + sign in the )
:xponent which is a common practice when working with spatial signals).

Ny-1 Ng-1 nom nom -
2 . _H .
F(my, my) = E j : £ny, ny) elZTr[MNX + Ny ] (9.3.1a) |
Ny~ ny:O -
Ne-1 Ny-1 nome  nom )
1 Z t -{2m| X=X V=Y 9.3. 1t S
f(nxy ny) = Nx Ny F(mx, my) (34 1 77[ NX Ny ] ( )) - H
my=0 my=0 -
ny, My £{0, 1, ..., Ny-1} ’ _
nY, my E{O, 1, v e ey Ny—l.}

If we choose Ny, Ny to be powers of 2 we can use the Fast Fourier Transform
algorithm to evaluate (9.3.1).

The integers ny, Ny, myg, my are defined by:

X = nyg 8% y = ny Ay
ky — my 8fy ky = my aofy (9.3.2)
Afy = 1/(Ny 8x) Afy = 1/(Ny ay;
) 1
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where the spatial increments are related to angular increments by

1

AX R cos ¢ AX (E-W direction)

(9.3.3)
Ay = R 4¢ (N-S direction)

Here the regular spatial grid intervals Ax and 8y are computed using the mean
latitude ¢=%=32.5° of the data location. The original data are considered here
as the discrete point-measurements of the gravity anomaly field of the surface
of the earth using uniform angular spacing A¢=AX=5’. This uniform spacing on
the sphere under transformation (9.3.3) becomes strictly speaking non-uniform
on the plane due to meridian convergence. Using a fixed value of ¢ in (9.3.3)
introduces some distortions to the original spacial distributions of the data.
Our study indicates that this distortion produces an essentially negligible
effect on the results due to the use of rather fine 5’x5’ grid defined on a
relatively smuall portion of the sphere (7°x9° block). In other words the flat
earth approximation being valid for the original Poisson space processing

data is also valid for its frequency implementation, at least for small regions as
discussed in this report.

Summary of frequency domain digital upward continuation procedures:

1. compute ax and Ay; {9.3.3) __"

2. transform the data to the frequency domain as indicated by (2.4.5) using ]
(9.3.1a); Cd

]
: 1
3. multiply the transformed data in the frequency domain by the transfer O
function A (2.4.6) e
1. invert the result back to space domain as indicated by (2.4.7) using ::';.
(9.3.1b). "
)

The above procedure was applied to our 7°x9° New Mexico study area, to
upward continue the entire 84x109 grid of 5'x5’ mean Faye anomalies (see
Sectior 8.7). The uplifted grid for an upward continuation distance of 28.5 km
is contoured in Figure 16, with a contour interval of 5 mgals. This figure )
should be compared with Figure 17 in which the corresponding grid from the
Rapp-180 field is contoured. The long wave agreement between Figures 16 and
17 is evident, with Figure 16 expectedly showing more detail because of the _ .
use of high frequency terrestrial data. : 1

For the Fourier upward continuation we used only a simplified procedure ' 1
including no windowing of the data or any other regularization routine in . 1
frequency domain (i.c., no specialized filters used). We found the results ‘-‘
produced by this simplified procedure in satisfactory agreement with the space
domain processing of original ag+tc field by means of Poisson’s integral. The ERERR
difference in results on the order of 0.15 mgal at 30 km flight altitude can be R
associated with the differences in numerical implementation. We employed this
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Upward Continued Faye Anomalies Using Fast Fourier
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*dure using the Fast Fourier Transform routine woobified from

"l-'tt'f'lsu‘.f
y p. 12). The technique was tested using the oricinal terrain corrocied
air anomaly field. The results were compuared alons F-W test profile wath
‘esults of the Poisson's integral operating on the same ficld.

The RMS difference over the test profile belweon those fwo reaiits wers
mgal for the upward continuation distance of 28.0 km.  For the vowsrsd
nuation distance of 3.5 km the RMS difference along the same test profile
2.32 mgal.

Fhe magnitude of the above differcnces is in fact on the order of

rences between the indirect and direct space domain procedures already
1ssed.  This indicates that the Fourier method can prove to be competitive
the one-step space domain processing (direct method) with respect o
~acy of the results. 1t can be recommended for fast processing of large
nes of gridded data to produce the image of the field (in a gridded form)
1y level surface above the data su-face. To get the values at any location
de the grid point the interpolation has to be performed which is a valid
ne provided the original data were gridded in accordance with  the
ling theorem (Robinson and M.T. Silvia, 1981, ch. 2.6).

)n the theoretical side it provides an elegant uniform treatment of  all |
1encies present in the original signal. On the practical side, it provides a
numerical procedure to transform the data upward from one level surface

nother. As far as accuracy is concerned the ocdge effects (inherent in .

ier techniques) should be treated with care by appropriate windowing

ne or (if possible) the region with data should cover enough grounds R

sunding the point of interest. R '.#
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pplications _to Balloon Gravity Project
1¢ theory outlined in this report was applied to the Balloon Gravity
't coordinated by the Air Force Geophysics Laboratory, Bedford,
chusetts. The experiment took place in New Mexico and was designed to
he theory, procedures and instruments used for both the measurements
ne prediction of gravity in space.

he comparisons between the observed and predicted gravity will give in
into the accuracy and performance of the theories and techniques of
.y recovery in space which are in the operational stage today. It is also
of the accuracy and performance of the balloon-borne instruments and
iques that are used today for the measurements of the external gravity

1 this section some technicalities of the actual gravity prediction
dure used for the Balloon Project are given. The method we chose for
nal application is the indirect method described in Section 3.3. To repeat
vy, the rationale behind this method is to extract the high frequency
ion in the original surface gravity. Here by high frequency variation we
‘stand the topographic effects (irregular geometry of the terrain plus tc
:tion).  As we have seen in the previous chapters this high frequency
ment  of  the gravity signal cannot be conceptually nor practically
rted downward to the Poisson’s spherical geometry so we did not try to
118. Instead we immediately upward continued this high frequency
ment (right from the original surface where it was defined) up to the
n's attitude using partially the ideas of equivalent source method as
nented in the prism integration of topographic effects.

fter the removal of this short-wavelength variation, the remaining regular
mn of the gravity field was converted downward (formally) Lo the Poisson’s
1eal geometry  (see Section  3.3). Then the long-wavelength or global
n - of this signal is upward continued in the frequency domain (using
qeal harmonies) and the mid-frequency portion is upward continued by
1 the usual Dirichlet problem for half space (in planar approximation) by
< of Poisson’s integral,

the actual cmpnitation we used the FORTRAY molementation of  the
m's ntegral procedure as described in (Rapp, February 1966). The

1 was  run using the gridded wmid-frequency portion of the gcravity
1y sonal as discussed in Section 3.3,

"veparation of  the  Batloon
Procodure

Tracking Data for Upward Continuation

he bndloon tracking data were sent on the madgneotic tape dated 3 Moy

The tape name s DUECKY [ Radar Tracking Data. The tape contained
filvs, with the float portion of the experiment contained s part of
]
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The positions of the balloon during the experiment were provided in the

form of geodetic coordinates (¢, A, h) with respect to the WGS72 ellipsoid (see
Table 10).

The original tape contained 462,200 positions. The original records were

‘parameterized by the time of measurements. On Figure 18 we show the spatial

location of the balloon’s trajectory. The average spacing of original tracking
data for the float portion of the experiment was approximately 0.6 m on the
ground. At the first step we reduced the number of data-points spatially by
choosing only the clusters of 10 original records spaced every 30" angular
distance apart from each other. During this step the false data records were
rejected and the remaining set containing 3160 records was checked for
blunders. The false data records on the original tape occurred at the end of
each file due to technical reasons.

Since we were primarily interested in the flight altitude portion of the
experiment (29-30 km altitude) it was sufficient to select only 1 data point
every 2’ spacing (in angular distance) along the track. The 2’ spacing is
sufficient for all interpolation purposes at flight elevation because the
anomalous gravity field is already very smooth at that altitude (see Figure 15a,
for example). The resultant data-set contained 31 values equally spaced in 2'
intervals covering the flight portion of the balloon’s trajectory, that is the
portion of the original data tape (file #3) which falls in the time interval
<57445.95, 66955.95>. The time is UTC time in seconds. In the computational

stage of this project we used the time only as a convenient parameter to locate
the data on tape.

10.2 Reference Systems Used in the Balloon Project

In this section we give the summary of reference systems and conversions
used at the stage of data preparation for the balloon project. The geodetic
coordinates (¢4, A, h) of the balloon positions provided on balloon tape were
given with respect to WGS72. The terrestrial gravity anomaly field that we
used in this project was given in the GRS67 system. The spherical harmonic
expansion of the global gravity field up to degree 180 was assumed to refer to
GRS80 (Rapp, 1981) (referred to as Rapp 180 field). The ellipsoid parameters
for the reference systems used are given in Table 10,

Ellipsoid a [(m] 1/f
WGS72 6378135 298.26
GRS67 6378160 298.2471674273
GRS80 6378137 298.257222101

Table 10. Parameters of the reference ellipsoids invoived in the dala
preparation for the balloon project.
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Now we will summarize the conversions used for upward continuation of
gravity anomalies. Since the original gravity anomaly field that we used in our
project refers to GRS67 ellipsoid we decided to convert the given geometric
heights hwgs72 that refer to the WGS72 ellipsoid to the normal heights H*GRrse7

that refer to the GRS67 ellipsoid.

geop

/ spherop

/”' geoid

‘/,,_———“’” ' o~ ellipsoid

Figure 19. The Spatial Relutionship Between Selected Gravimetric Quantities

From Figure 19 we have the relation:

(10.2.1)

H FH+ (N-¢)

%
GRS67 GRS67

where ¢ is the geop-spherop separation or height anomaly at balloon’s
altitude.

Instead of the difference (N-¢{)Ggrse7 we will actually use (N-{)grsgp in the
approximate relation:

X z - LI
Hrse7 B+ (N = Oapsgo (10.2.2
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For the orthometric height H appearing in (10.2.2) we can write the relation
(see Figure 19):

H = hspsso ~ Norsso (10.2.3)

To gel hgrsgo from a given hwgs72 we implement the well known formulas of
geometric geodesy (Rapp, 1984, Geometric Geodesy Notes, Vol. 1, pp. 121-122) in
the following procedure

input: hWGS72’ ¢
compute: Zyes72 - (N(1 - e?) + h) sin ¢ using WGS72
constants
convert: Zarsso - Zwgs72 t Az s 2GS T2 (10.2.4)
here we set the origin shift AZ to zero so that
the ellipsoid WGS72 and GRSB0 have a common center
compute: hGRS80 = siﬁ e N + e32N using GRSBO constants

where N = a/vYl-e?sin?¢ , e2 = 2f - f2,

In practice, instead of converting each data point separately using the
above formulas, we applied a single common constant ah = -1,66 m to each
height given in the WGS72 system: '

hirsso ™ Pwes7e b (10.2.5)

where the particular value of ah = hgrsgo-hwgs72 = -1.66 m has been
evaluated by the sequence of equations (10.2.4) (starting from a nominal
hwgs72 and computing the equivalent hgrsgo) using the mean latitude of the

balloon's lrajectory (32.40°) and the mean altitude of the flight section of the
experiment (30 km).

Using (10.2.3) and (10.2.5) we can write (10.2.2) in the final form:

X ~ -
Warse7 ® Mwes7z © *M " {grsao (10.2.6)

In the actual implementation of equation (10.2.6) we used the Rapp 180 field
{based on the spherical harmonic expansion of gravity potential up to degree
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and order 180) to generate the required values of height anomalies ¢GRsg0-
Due to the smoothness of the height anomaly field at flight altitude a single
constant mean value of ¢{Grs80 = -23 m (20.26 m) was used in formula (10.2.6).

The normal heights (10.2.6) were subsequently used in the FORTRAN
subroutine for Normal Field Computations (Rapp, 1966) (see also Section 2.6) to

generate normal gravity at the exact balloon positions. The routine was run
using GRS67 constants.

10.3 Upward Continuation Results

The upward continuation procedure of gravity anomaly described in this
report was actually applied only to the 31 points selected in Section 10.1. The
results are shown in Table 11. The position of each point is defined in
columns 1 to 4: (1) time tag in the tracking record; (2) latitude; (3) longitude;
and (4) height above the WGS72 ellipsoid. Columns 5 to 7 give the upward
continued anomaly contribution from: (5) residual defined Bouguer anomalies;
{6) spherical harmonic anomalies; and (7) topographic anomalies. Columns 5, 6,
7 were summed to form column 8, which is the total upward continued anomaly
from the indirect method of upward continuation. Column 9 gives the normal
gravity to be added to the upward continued anomaly to produce the first
model for measured gravity at the space point. Columns (10) and (11) give the
upward continued anomalies resulting from the direct method of upward
continuation of surface anomalies using terrain-uncorrected and terrain-

corrected surface anomalies, respectively. Columns (12) and (13) give the
errors of columns (10) and (11) relative to the expectedly more rigorous
indirect method (column 8) of upward continuation. The mean error and

standard deviation of errors are as follows:

Error of Direct Method Error of Direct Method

without use of tc (col. 12) with use of tc (col. 13)
mean error -0.51 mgal 0.14 mgal
s.d. error 20,35 mgal 30,18 mgal

In agreement with earlier results, we see an improvement with the use of
terrain correction in the direct method.

10.4 Interpolation of the Results at Altitude

In the last step the upward continued values were interpolated at all
original data-records on the balloon tape that fell in the time interval covering
the flight portion of the experiment (190,201 data-points). Only results from
the indirect upward continuation method were used (Table 11, Col. 8.). The
actual interpolation was done using the one-dimensional cubic spline routine
(subroutines SPLINE and SEVAL, Forsythe et al.,, 1977) applied to the flight
sequence which has been parameterized with longitude only.
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To check the internal accuracy of this interpolation process we removed
every other record out from the 31 "master" points and treated the remaining
16 points as the new knots in the spline interpolation procedure. In this way
we interpolated values at the removed knots and compared with the "true"
values obtained directly from the upward continuation process. The
differences were on the order of 0.01 mgal in gravity anomaly.

For the normal gravity computation the chosen 31 grid points were not
dense enough to properly recover the normal gravity at flight altitude, mostly
due to the vertical gradient of normal gravity. It was evident especially at
both ends of the flight portion of the experiment where the balloon changes
altitude very rapidly. Therefore we decided not to interpolate normal gravity
but to compute it rigorously at every observational point (see Section 2.6).

10.5 Propagation of Positional Errors

On the original balloon tape the positional accuracy of the balloon in all
three directions were provided with each data-record. The average accuracy
of the 31 points selected for actual upward continuation was on the order of
2 m in all x, ¥y and z coordinates.

Considering that the largest horizontal gradient of the actual computed
anomalous gravity field along the flight portion of the balloon trajectory is
about 0.0006 mgal/m (this is the actual gradient of the computed resuilts for
the balloon project), we assess the maximal error due to the 2 m uncertainty
in the horizontal position of the balloon to be 0.0012 mgal in gravity anomaly
and 0.0011 mgal in normal gravity (for normal gravity computation, only the
uncertainty in N-S direction must be considered).

The uncertainties in altitudes will also produce uncertainties in the
computed components of the gravity field. From Table 9 we learn that the
vertical gradient of the actual Ag field at 30 km flight altitude is about 0.0003
mgal/m. Therefore the 2 m error in the balloon vertical position will show up
as the uncertainty of about 0.0006 mgal in the computed ag field. Similarly
the vertical gradient of normal gravity of 0.3086 mgal/m (Rapp 1982, p. 8) will
cause the uncertainty in the computed normal gravity of about 0.6 mgal (due to
the 2 m uncertainty in the altitude).

Also, the error in geoid undulation (more precisely in height anomalies)
used in the data reduction propagates directly to the uncertainties in the
clearance of the balloon above the datum surface. In our project we used the
height anomalies field implied by the set of potential coefficients up to degree
180 computed by (Rapp, Dec. 1981) and referred to as the Rapp 180 field. The
height anomalies were needed in data reduction process to convert the WGS72

gecometric heights given as the data to the normal heights in GRS67 (Sce
Section 10.2).

The Rapp-180 field used in the data reduction process gives Lhe
undulations (height anomalies) with the accuracy on the order of t1 m (Rapp,
Dec. 1981, p. 31). For our actual sub-balloon trace in New Mexico we decided it
is sufficient to represent the Rapp-180 height anomaly field in this area by a
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constant value of -23 m (*0.26 m) which is the mean height ancmaly computed
for the flight portion of the experiment only. We conclude that the usage of
the Rapp-180 undulation field introduces about 1 m uncertainty into the balloon
vertical position. Using the same vertical gradients stated above we find the
0.0003 mgal error in the computed Ag value and the 0.3 mgal error in the
computed normal gravity.

In conclusion, we notice that the positional errors in the balloon
coordinates and the height anomaly error do not noticeably affect the gravity
anomaly computation, but they have an effect on the computed normal gravity
and on the predicted observed gravity {(mainly due to the altitude error).
Therefore, the predicted observed gravity may be contaminated by at least 0.6
mgal uncertainty due to the vertical positional errors.

10.6 Other Sources of Errors

In Section 6 we considered theoretically how the errors present in gravity
data propagate through the upward continuation integration. Here we can try
to use some of the results of Section 6 to give the rough evaluation of errors
that affect the actual procedure.

The main source of the gravity data error probably comes from the
gridding procedure of the gravity material by means of the collocation pre-
diction of the mean 5°x5’ values. If we assume that the mean values computed
by the collocation prediction procedure are contaminated by the error function
having error variance of 25 mgal? (this number is a rough estimate from the
formal errors output by the collocation prediction in the area of the balloon
flight; see Figure 12, central portion) and the correlation length of about 10
km (this correlation length is unavoidably due to the gaps in the original
gravity data of about this size which cause the adjacent 5’x5’ blocks to be
correlated), then we can use Table 2 together with (eq. 6.2.9) to conclude that
at 30 km flight altitude the propagated effect is about 0.9 mgal (in standard
error}) with 55 km correlation length. This puts the limit of accuracy on our
entire procedure. This limit is due to the quality of the original gravity data
mainly in spatial distribution and cannot be overcome by refinements in
procedure unless the geometry and quality of original data are improved.

It should be noted here that errors present in the mean anomalies (for
which 25 mgal? variance and 10 km correlation length at ground level was our
rough estimate) are due to both: errors in the original gravity point-values
(on input to collocation prediction routine) and errors of interpolation. The
error of interpolation comes from the difference between the true gravity
anomaly and the gravity anomaly model implemented by the subtraction of the
reference field in order to center the original data., Of course where the
original data are very dense the computed mean values are (almost)
uncorrelated and are affected mainly by the point-gravity data error. If this
error in original point-values could be modelled by a weakly correlated noise
having correlation length shorter than 5'x5’ blocks (used in prediction) then
this type of data error would tend to cancel during the computation of 5’x5’
means, producing essentially negligible effect at 30 km altitude. If the
point-data field is sparse in some areas then the predicted mean values will be
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ffected by both data error and the interpolation error. In sparse areas the
omputed mean values tend to be correlated with each other and so will be the
nterpolation error. The correlation length of this error is dependent on the
iize of the gaps in the original data - the larger the gaps the wider correlated
rrors (from this type of analysis comes our rough estimate of 10 km
iorrelation length errors present on output of collocation prediction
srocedure). As we learn in Section 6 such widely correlated errors do not
ittenuate very fast with altitude. For example, according to our rough
ratimate (see Table 2) at 30 km flight altitude the correlated errors produce
he effect that cain be descibed as the distortion function which is 0.9 mgal in
implitude and 55 km wide in correlation length. This type of effect can very
asily be misinterpreted as some sort of systematic error and wrongly
issociated with errors in the modeling of the upward continuation distance (see
Section 9.2.3) or the data reduction error. We consider this type of error as
the main limitation of .accuracy of final results.

Another effect cor.sidered in Section 6 is the representation error due to
the conceptual replacement of the true gravity field by the step function
composed of the flat patches over 5’x5’ blocks. At 30 km flight altitude the
rough estimate of this effect in gravity anomaly is only about 0.01 mgal
{standard error).

If we assume that the effects considered here act independently of each
other we can sum th: error variances of each component to get the rough
estimate of the total :rror to be 0.92 mgal (total standard error) in gravity
anomaly and about 0.7 mgal error in normal gravity.

In Table 12 we give the summary of errors that affect the actual results of
upward continued gravity anomalies and normal gravity for the Balloon Project.
Notice that the indirect method is to some extent free of the truncation error
(Section 4) since we carry up the complete global long-wavelength information
represented by the spherical harmonic expansion of the gravity field up to
degree 180.

In order to get a feeling of the actual magnitude of propagated errors it is
possible to perform sme simplified numerical test. (Rapp, 1966) suggested a
simple numerical checx (not estimate) on the relative magnitude of propagated
uncorrelated errors .n the upward continuation process. The trick is to
upward continue the cstimates of accuracies of gravity material using the same
computer program which was used to process the actual gravity data.

In a computer implementation the upward continuation integral (6.1.1) takes
the form of summation:

Z Z’: ig D, (10.6.1)

This is a weighted average operator. Now, if we know the accuracy m’ng of
each component agi; used in the summation (10.6.1) we can neglect the
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srrelations between adjoining blocks (i, j) and simply sum the individual error

ariances m?;g over all blocks used according to the formula:

wagy = mr p Y e (5

‘able 12. Error Budget of the Gravity Upward continuation for the Balloon
Project
Effect at 30 km Altitude
Source Gravity Anomaly Normal Gravity

The original gravity material 0.9 mgal standard unaffected

error and the error in predicted error

5’%5’ mean anomalies (interpola- 55 km correlation

tion error) (see Section 6) length

assumed: standard error 5 mgals

correlation length 10 km

Errors in the modelling of the 0.2 mgal uncer-— unaffected

upward continuation distance tainty

(on the transition from the true

earth to the Poisson’s spherical

geometry). (See Table 9, col. 3).

assumed uncertainty: 1.5 km

Representation error 0.2 mgal standard unaffected

(See Section 6) error

Errors in the balloon position

(See Section 10.5)

horizontal errors of 2 m 0.0012 mgal 0.0011 mgal
maximal error uncertainty
vertical errors of 2 m 0.0006 mgal 0.6 mgal un-

uncertainty certainty

Height anomaly error

(See Section 10.5)

Estimated uncertainty of 1 m 0.003 mgal 0.3 mgal
uncertainty uncertainty
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. is the quadrature formula similar to (10.6.1) but with the squared kernel.
efore, we used the actual upward continuation program described in (Rapp
) to upward continue the uncorrelated errors in the gravity material due
the prediction of nean values on the 5'x5' grid, using (10.6.2). For
tramming details see (Rapp, 1966). Computation was performed exactly at
balloon locations giving the accuracies on the order of 0.2 mgal for the
at portion of the balloon trajectory (30 km upward continuation distance).
n this single experiment we observe the attenuation of errors from about 4
s (on average) at the ground level to about 0.2 mgals at 30 km flight
ude.

It is important to realize that thisz numerical experiment is wvalid only for
specific type of error (namely errors due to prediction of the mean gravity
maly values on the grid, see Secticn 8.3 for details) assuming the error is
orrelated. Also the arbitrary scaling of error variances on the ground
ild produce the respectire rescaling of upward continued variances of flight
ration. In that sense only the relative degree of attenuation is a meaningful
come of that numerical check.

99

P A W WA VORI SURIEIINE WL S P N




Summary and Conclusion

We have presented operational procedures for the upward continuation of
ity anomalies given on the surface of the earth. The main conceptual
culty is that operationally available anomalies are referred to the earth’s
ace, which is not an equipotential surface. These surface anomalies can be
ard continued using discrete estimation procedures such as collocation or a
hammar-type of approach, but in this rcport we have avoided such
niques because of the expensive matrix inversions that they require.

Instead, as stated in Section 1 we used collocation orly in a preliminary
1, to predict an optimal set of mean anomaly values from the available
gularly distributed point anomaly data. This application of collocation is
rationally feasible because in contrast to the prediction of upward
tinued values, the prediction of mean anomalies requires information to be
:rted only from a small number of data points around the computation block.
ir obtaining a complete set of mean anomalies over rectangular blocks we
n to a continuous upward continuation problem, in which it is assumed that
rvery point on the earth’s surface we know the gravity anomaly function, as
resented by the mean values.

The upward continuation of a continuous gravity anomaly function given
the (non-level) surface of the earth is by no means a simple problem. The
plest conceptualization of a solution is by means of Taylor series expansion,
which the surface anomalies are first used to derive anomalies on a level
face using the vertical gradients of the anomaly field. Once the level
face anomalies are known classical Poisson integration yields a solution to
upward continuation problem with relative accuracy on the order of the
th's flattening. However, for rough anomaly fields the computation of
‘tical gradients required for data reduction to a level surface, itself requires
:h density and accuracy of data that is not usually available in practice (see
+ (1980), for example). Moreover, for such fields downward continuation of
‘face values cannot be expected to be regular. Therefcre, as reasoned out
Section 3 we have resorted to the so-~called indirect method of upward
itinuation.,

The most important feature of the indirect method is the extraction and
>arate modeling of the high frequency irregularities of the original gravity
ymaly signal. This high frequency component is due to shal ow topographic
sses, and can be modeled by directly integrating the gravitational effects of
1Ise masses without need for any sort of data reduction to a level surface.
erationally, the topographic effects on gravity anomalies at altitude can be
nputed by prism integration as stated in Section 2.5 with an opserational
>gram mentioned in Section 7, while on the earth’s surface the topographic
ect on gravity anomaly at a point is conveniently formed as the sum of a
wguer plate” effect and a "terrain correction” effect (cee (3.3.11)). In this
wort we modeled the high frequency component of the (-dimensional gravity
>maly field wusing as "equivalent sources” the positive and negative
ographic masses of assumed density 2.67g/cm?®, lying between the actual
wgraphy and a reference topography to spherical harmonic degree and
ler 180. With the extraction and separate modeling of the high frequency
maly signal we circumvent the major difficulties associated with the
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reduction of surface data to a level surface, these difficulties being precis ‘y
due to the high frequency irregularities of the field.

The residual field left after removal of topographic effects is much
smoother than the original field. From this residual field we decided to
further remove and separately model the low frequency component using the
Rapp-180 (1981) field. This was done in order to formally free the upward
continuation from truncation error caused by neglect of remote zone data. In
order to remove the effect of the Rapp-180 field from the surface data, the
data points were basically taken at their actual horizontal positions, but an
assumption had to be made that the data points all lie on a common level
surface and not in their actual vertical positions. The assumption was
necessary to keep evaluation time for the Rapp-180 field reasonable. The
assumption seems justified because the vertical gradient of a 180-field is
expected to be small, but this point can be further studied (see, for example
Table 9). The Rapp-180 field was evaluated at ground level using a program
for fast generation on a grid, while at isolated computation points at altitude
another program suited for single point computations was used (see Section 7).

The medium frequency residual field, left after removing both the high
frequency topographic effects and the low frequency spherical harmonic field,
was then modeled by the Poisson integral. Since the data points were still
located on the earth’s surface, a data reduction to a level surface was still
called for. However, since the residual field is much smoother than the
original field, an approximate reduction can be used. To do this a
long-wavelength form of the terrain correction, namely, the terrain correction
tc8 of an expansion of the topography to cegree 180, was implicitly applied to
the residual anomalies. The application of long-wavelength terrain correction
to approximate a first order long-wavelength reduction of surface anomaly data
to a level surface is discussed in Moritz (1966). Since the final position of the
level surface to which the data are reduced is uncertain in this procedure, it
was simply assumed that this position coincides with the mean elevation of
topography in the area of upward continuation. Such uncertainties in defining
the data level directly causes uncertainties in defining the upward continuation
distance H, which is the vertical clearance between the data level and the
upward continuation point in space. The numerical effect of such uncertainties
on upward continuation results can be examined from Table 9.

The final upward continued gravity anomaly model of the indirect method
was then the sum total of three contributions: low frequency contribution from
spherical harmonics, high frequency contribution from topographic mases, and
medium frequency contribution from Poisson integration of terrain-corrected
residual field., The relative order of magnitude of the three contributions
depends on the spectral distribution of power of a particular field,and for the
profiles tested in Section 9 the contributions were about the same in
magnitude.

As a matter of interest, we compared the results of the indirect method to
those of two simpler upward continuation procedures. The first was the direct
Poisson integration of the original terrain-uncorrected surface anomalies,
simply assuming the anomalies to lie on a common level surface. The second
was the direct Poisson integration of terrain-corrected surface anomalies, with
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the terrain-corrections intenc~d to effect an approximate data reduction to a
level surface. The terrain corrections in the second method originated from
the point terrain corrections given in the original data records, these
corrections having been applied to the original point anomalies before the
prediction of the mean anomalies used in Poisson integration.

For the numerical tests we developed 5'x5’ mean anomalies and 5'x5’ mean
elevations in a 7°x9° test area in New Mexico, starting from available
irregularly distributed point anomaly data and 30"x30" grid point elevations.
The 30"x30" elevations themselves were also used in the final computations, for
detailed integration of topographic effects in the immediate vicinity of the
computation point. The various operational steps in developing mean anomalies
including data thinning, tailoring of covariance function, use of only the ten
closest data points in the collocation prediction, and data de-trending at high
and low frequencies are discussed in detail in Section 8. The required
resolution and area coverage of mean unomalies for given upward continuation
distances, as well as the effect of data error propagation, can he assessed
based on concepts presented in Sections 4, 5 and 6.

Numerical investigations on upward continuations to te;t-profiles at 30, 10,
and 5 km are presented in Section 9. The test profiles resulting from the
direct Poisson integration of terrain-uncorrected anomelies are negatively
biased (i.e., too low) by about (0.6, 0.5, 0.7) mgal at elevation (30, 10, 5) km
compared with the profiles resulting from the direct Poisson integration of
terrain-corrected anomalies. This bias between the iwo direct methods
represents the effect of upward continued terrain corrections (see (9.2.3)).
There is no detectable bias between the terrain-correctec direct method and
the indirect method; this is mainly due to the fact that in the Poisson
integration part, the two methods both use terrain-corrected anomalies (see
(9.2.6) and (9.2.7)). The standard deviation of the differences among all three
upward continuation methods reach the order of (0.5, 0.6, 1.3) mgal at (30, 10,
5) km elevation (see Tables 3, 4, and 5).

In Section 10 we present the details of applying the upward continuation
methods to compute anomalies (and total gravity) at points of the balloon~-borne
gravity measuring project of AFGL. It is hoped that such projects would
provide "aerial truth” assessment of the accuracies of upward continuation
models. It is projected in Section 10.6 that values at the balloon points have
been recovered with about 0.9 mgal standard error in gravity anomaly with
data error propagation as dominating error source, and about 0.7 mgal error in
normal gravity with vertical position error as dominating error source.

In another series of tests (Section 9.3) we have shown agreement between
Fast Fourier upward continuation and Poisson integration, on the level of (0.1,
0.3) mgal at (30, 10) km elevation. Fast Fourier techniques are useful for very
fast generation of complete grids of upward continued values.

We conclude that actual gravity measurements at altituie should be used to
validate the various procedures presented in this report. Practical validation
will be most important. First, to ascertain the accu-acy of the upward
continued gravity values, and second, to ascertain the improvements gained by
employing the following intended refinements: the use of terrain correction to
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approximate data reduction to a level surface, and the modeling of high
frequency anomaly components as topographic mass effects. Preferably, actual

measurements should be accurate in the milligal level, to validate the small bias
and differences observed in our numerical comparisons.
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DIGITAL FOURIER TRANSFORM FOR UPWARD CONTINUATICN

//7 JOB

// REGICON=512K+MSGLEVEL={2,0}

/J*JOBPARM V=S

//PROCLIB DD DISP=SHR,DSN=GECDSCI1.PRCOCLIB

// EXEC VSSUPER

//SCURCE DD =

C

c

C

C UPWARD CONTINUATION CF DG BY FOURIER TRANSFORM
IMPLICIT REAL*8 {(A-H,0~-21)
COMPLEX*]16 Z2(128,128),CTEMP(128)
DIMENSION TEMP(10Q08)
DIMENSION Dl1(2,128,128)
EQUIVALENCE (D1(1,101),201,1))
COMMON CTEMP

c

e Ty

C INITIATE CONSTANTS (LINEAR MEASURE IN KM ANGULAR INITIALLY IN DEC DEG)

H=28.50D0
R=637100+1.5D0
AMELEV=1.5D0
PI=4D0*DATAN{1DO)}
ANGRID=500/6000
FIAVER=32.500
c
C LINEAR INCREMENTYS IN E-W AND N-S DIRECTIONS
DX=R*DCCS(FIAVER*PI/180DC)*ANGRID*P1/180D0
OY=R*ANGRID*P1/180D0
C
C INPUT THE CATA
NX=128
NY=128
INDX=108
INDY=84

00 2 I=1,NY
DO 2 J=1,NX

2 Zl1+,43=(0D0,0D0)
OC 5 I=1,INDY
READ(L+7O0L)(TEMP{JI} sJd=1,INDX)
DO 5 J=1,INDX
ZUL,JI=TEMP(J)

S CCNTINLE

7001 FORMATI10X,10F7.2/713X%X.11F7.2))
c
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c -—— - - - ——
C FORWARD 2-C TRANSFCRM (+SIGN)
CALL FFT2D(ZyNY NX,y+1)
c
c
C FREQUENCY INCREMENTS
OFX=100/ (NX#DX)
DFY=100/(NY*DY)
C
C UPWARD CONTINUATION 2D TRANSFORM { - SIGN)
CALL FFT2UP(HsDFYOFXsZ o NYoNXy-1)
C - ——— ———— e ————
c
C QUTPUT

0O 11 I=1,INDY
D0 10 J=1,INDX
10 TEMP(U)=ZI11,4)
11 IF(I.EQ.42) WRITE(647002){JoTEMPEJ) yd=1,INDX)
7002 FORMAT(1X,13,F7.2)
c
sTap
END
SUBROUTINE FFT2D THyNXyNY,NSIGN)
C“#**##*‘#*#t#tt*#**#**t*##**t##**#*t*#t*t#t*ttt#tttt
SUBROUTINE FFT20 COMPUTES THE TwO DIMENSICNAL FOURIER TRANSFORM
CF A CCMPLEX ARRAY HINX,NY)oNX AND NY MUST BE A POWER OF 2.

NSIGN= +1 INVERSE TRANSFCRM

C
C
C
C
c
c NSIGN= ~1 FCRWARD TRANSFCRM
C
CHEXRERERREEAERXE XL R AR ERER KRR R SR ARRERERRKRRE SRR SRR KK KR
IMPLICIT REAL#*8 (A-H,0-21)
COMMOMN CTEMP
COMPLEX*16 HINX,NY),CTEMP(128)
SIGNI=DFLOAT(NSIGN)
DC 10 IY=1,NY
10 CALL FCRKINX,H{1,1Y),SIGNI)
IFINY.EQ.1) RETURN
D0 20 IX=14NX
00 30 IY=1,NY
30 CTEMP(IY)=HIIX,1Y}
CALL FCRKINY,CTEMP,SIGNI)
D0 40 1v=1,NY
40 HUIXsIY)=CTEMP{1Y)
20 CCONTINUE
RETURN
END
SUBROUTINE FORKI{LXsCXsSIGNI)
CERABAERLAERIRBRREEE SR IR ASRER IR R RE RS RRE AN S SXER RS R X RE
c FAST FCURIER TRANSFORM, MCOIFIED FRCM CLAERBOUT,J.F.
c FUNDAMENTALS OF GEOPHYSICAL DATA PROCESING, MCCRAW-HILL,1976.
c Lx
c CXUK)=SUMICX{J)I*EXP(2*PISSIGNI*I*(J-1)*(K~1)/LX))
C J=1
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c FOR K=Z1920e0es {LX=2*%%INTEGER)
c SIGNI= +] INVERSE TRANSFCRM
C SIGNI= -1 FCRWARD TRANSF(CRM
C LX MUST BE A POWER OF 2 (LX=2#%%[NTEGER)
C NCRMALIZATION PERFORMED EBY DIVIDING BY
C CATA LENGTH UPON THE FORWARD TRANSFORM
W IIITEITIEIS RIS RIS SRS RSS2 22222 22 2 22 R 2 2 2 22
IMPLICIT REAL*8 (A~H,0-2)
COMPLEX*16 CX(LX) sCARGoCEXPyCW CTEMP
PI=4DO*DATANI(1DO)
J=1
SC=1D0/DFLOAT(LX)
DO 30 I=1,LX
IF(1.GE-J) GOTO 10
CTEMP=CX(J)
Cx€J)=Cx{I1)
CX{I)=CTEMP
10 M=LX/2
20 IF{J.LE.M) GOTQ 30
J=J-M
M=M/2
IF{M.GE.1) GOTQ 20
30 J=J+M
L=1
40 ISTEP=2%L
DG 50 M=1,L
CARG=(0D0,1DO)*{PI*SIGNI*DFLOAT(M=-1)}/DFLUAT (L)
Cw=CDEXP(CARG)
D0 SO I=M,LX,ISTEP
CTEMP=Cw*CX[I+L)
CX(I+L)=CX{I)-CTEMP
50 CXII)=CX{I)}+CTEMP
L=ISTEP
IF(L.LT.LX) COTO 40
IF{SIGNILGT.(D0) RETURN
0C 60 I=1,LX
60 Cx{I1)=CX{I)*SC
RETURN
END
SUBROUTINE FFT2UP (ELEVsCFX,DFYsHyNXyNY,NSIGN]
CE*E 2R AR K XXX E RSB AX XSS SR REERRRE RS EEERRERRE X EF X ERE KKK
SUBROUTINE FFY2D COMPUTES THE TWO DIMENSICNAL FQURIER TRANSFORM
CF A CCMPLEX ARRAY H(NX,AY),NX AND NY MUST BE A POWER QOF 2.
ELEV S THE APWARD CONTINUATICN DISTANCE ISAME UNITS AS DX DY)
DFX DFY FREQUENCY INCREMENTS ASSOCIATED WITH INDEXES NX NY RESP
DFX=1/(NX*DX) DFY=1/{NY*0DY)

NSIGN= +] INVERSE TRANSFCRM

c
c
C
C
C
C
c
C
C NSIGN= ~1 FCRWARD TRANSFCRM
c

C

L EEIT RS RS R TR E 222 2220 2R3 22 R R R 2R 222 222 222 R 2 22 X2
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IMPLICIY REAL*8 (A-H,C-1)
COMMON CTEMP

COMPLEX*16 H{NX,NY),CTEMP(128)
P1=4D0*DATANL1D0)
SIGNI=DFLOATINSIGN])

DO 16 IX=1,NX
IF{IX-1GTNX/2)THEN
IPX={IX=1)-NX
ELSE
IPX=1IX~1
ENDIF
00 15 1Y=1.NY
IF{IY-1.GT.NY/2) THEN
IPY={1Y-1)-NY
ELSE
IPY=1Y-1
ENDIF
DUMP=DEXP(—-ELEV*2D0*PI*DSQRT(DFLOAT (IPX )*%2*0F X*32+DFLOAT(IPY)
$3¥2+DFY*¥2)})
15 HUIXsIY)=DUMP*H(IXeIY)
16 CCNTINUE

DC 10 1vy=1,NY
10 CALL FCRK{NX,H{1l,1Y)+SIGNI)

IFINY.EQ.l) RETURN

DO 20 IX=1,NX
DO 30 IY=1,NY
30 CTEMP(IY)=H{IX,1Y)
CALL FCRKINY,CTEMP,SIGNI)
DO 40 IY=1,NY
40 H{IX,IY)=CTEMP({I1Y)
20 CONTINUE
RETURN
END
/%
//GO.FTOLFCO1 DD DISP=SHR,DSN=TS4268.FA5X58.NEWMEX
7/
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